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ABSTRACT 

In this study, artificial neural networks (ANN) were used to 
develop a shale gas reservoir expert system. The developed 
expert system provides solutions for complex wells instead 
of the typical massively hydraulically fractured horizontal 
wells (MHFHWs). The objective of the expert system was to 
accurately and instantaneously perform the following three 
tasks: (1) Predict the production profile for a given complex 
well structure from a given shale gas reservoir; (2) Propose 
a robust suite of complex well design parameters capable of 
producing a given production profile from a given set of reser-
voir properties; and (3) Predict shale reservoir rock properties 
corresponding to a given gas production profile from a given 
complex well design. All wells in this study operate under 
fixed plateau rate conditions.

ANN based models are capable of solving problems that 
do not have a definite analytical or numerical solution. As 
an example, one can consider the complex interaction of a 
complex well’s transient behavior, especially in dual porosity 
reservoir systems as experienced in shale gas reservoirs. In addi-
tion, ANN based models have the ability to analyze large data-
bases using their high power pattern recognition capabilities. 
The developed expert system is able to perform its aforemen-
tioned three tasks instantaneously at high levels of accuracy. 

Developing a complex well shale gas expert system has its 
advantages compared to relying on conventional methods. 
For example, developing an analytical model to predict the 
performance of a complex well is an arduous task, especially 
in shale gas reservoirs, due to their complexities and heteroge-
neities. In addition, sole reliance on numerical reservoir simu-
lation to design a complex well, capable of matching a desired 
production profile from a desired reservoir, consumes a lot 
of time to build and to run all possible scenarios, and then to 
optimize. Use of ANNs has the ability to overcome these chal-
lenges, as illustrated in this article.

To assess if complex wells can be an alternative to MHF-
HWs, both well types were compared against each other in 
the same reservoirs. In such a comparison, response functions 
such as cumulative productions, production profiles, and 
flowing bottom-hole pressure profiles are included. Due to 
the scarcity of real field data for complex wells in shale gas 

reservoirs, numerous reservoir simulation models were used 
to generate the time series of data to be used in training the 
expert systems. 

All reservoir simulation input properties are randomly gen-
erated within a determined maximum and minimum value, 
and their corresponding outputs are paired together. The 
resulting large database is reorganized to fit the three expert 
system objectives, and is further divided into training, testing, 
and validation subsets. For each objective, an ANN based 
model was structured and trained on the large database. Sev-
eral data transformation techniques and functional links were 
used to increase the ANN prediction accuracy levels. 

The results prove that complex wells have the capability 
to meet or exceed the MHFHW plateau time and cumulative 
production, in shale gas reservoirs. Complex wells with their 
increased and targeted reservoir exposure, along with their 
reduced water consumption, are becoming an attractive alter-
native to MHFHWs.

INTRODUCTION

Unconventional gas production continues to accelerate glob-
ally with each passing year, and the increase is dominated by 
shale gas production. Production forecasts of natural gas are 
available from the U.S. Energy Intelligence Agency (EIA)1. The 
data shows that shale gas is the dominant driver in the growth 
of natural gas production during the next 20+ years, Fig. 1. 
The demand for natural gas, as consumption rises, is expected 
to drive an increase in shale gas in particular, and unconven-
tional gas in general. For example, U.S. natural gas consump-
tion is forecasted to increase even under low economic growth 
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Fig. 1. Projected world natural gas production by type, from 2010 to 20401. 
 
 
 

 
 
Fig. 2. U.S. historic and forecasted natural gas consumption2. 
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Fig. 1. Projected world natural gas production by type, from 2010 to 20401.
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and low oil prices, Fig. 22.
In the U.S., shale gas has been produced over a period of 

more than a century3; however, it was not significantly devel-
oped and commercially produced until the last decade4. This 
shale gas development postponement has different causes, 
such as the supply and demand of natural gas, expensive 
exploitation techniques, and lack of a sufficient understanding 
of the unconventional resources. 

Shale gas is globally available in large quantities; how-
ever, it is difficult to develop shale gas resources due to their 
low permeability characteristics, typically less than 0.001 
millidarcies5.

ASSESSING THE LEVEL OF CONFINEMENT IN 
HYDRAULIC FRACTURES IN SHALE GAS FORMATIONS

The hydraulically fracturing of shale formations faces several 
disadvantages such as consuming large quantities of water and 
confining the hydraulic fractures within the region of interest. 
The longer the half-length of the hydraulic fracture, the lower 
its level of confinement becomes. The existing natural fracture 
networks and their hydraulic connectivities have a controlling 
effect on hydraulic fracture propagation.

Several studies have shown that hydraulic fractures in nat-
urally fractured reservoirs, such as shale formations, are more 
likely to follow a complex to a very complex geometry, Fig. 36, 7.

This complex geometry is affected by a number of factors, 
such as in situ stress distribution, natural fracture connectiv-
ity, fluid leakoff from the propagating fracture, natural frac-
ture orientation, and the tip of the fracture effect. As existing 

hydraulic fracture models are not capable of capturing such 
a complex hydraulic fracture propagation, new models are 
required to accurately capture their complex geometry6, 8, 9. 

Not all authors consider all of the aforementioned com-
plexities in their studies. For example, some authors con-
sider the fluid leakoff from the propagating fracture in their 
hydraulic fractures model8 while others assume there is no lea-
koff10. Dahi-Taleghani and Olson (2011)8 have considered the 
shear stress caused by hydraulic fracture fluid leakoff into the 
natural fractures, and natural fractures reopening due to stress 
caused by the tip effect. Their model is based on the assump-
tion that hydraulic fractures will propagate in the direction of 
intersecting natural fractures. Then, they modified their model 
and indicated that when hydraulic fractures intersect natural 
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Fig. 3. Hydraulic fracture complexity: simple, complex and very complex fractures5. 
 
 
 

 
 
Fig. 4. Possible scenarios at the normal intersection of a hydraulic fracture and a natural fracture: (a) 
hydraulic fracture crosses natural fracture without incident, (b) hydraulic fracture ends at natural fracture, 
and (c) hydraulic fracture diverts into natural fracture and propagation continues6. 
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Fig. 3. Hydraulic fracture complexity: simple, complex and very complex fractures6.
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fractures, they can get arrested by it or cut through it, Fig. 48.
Some investigators have evaluated the fracture propaga-

tion that would occur after a hydraulic fracture intersects an 
existing natural fracture. Their model indicates that when a 
hydraulic fracture intersects a natural fracture, one of the fol-
lowing scenarios would occur: (1) crossing the natural fracture, 
dilation of the natural fracture, then propagation from the tip 
of the natural fracture, or (2) dilation of the natural fracture, 
then breakout of a fracture from along the natural fracture11.

Most hydraulic fracture analysis models, when implemented 
in natural fractured reservoirs, highlight the uncertainty asso-
ciated with the propagation direction and the level of confine-
ment. Low level confinement becomes more pronounced in 
massive hydraulic fractures commonly used in shale gas wells.

Complex Wells

In this research, complex wells are considered an attractive 
alternative to the massively hydraulically fractured horizon-
tal wells (MHFHWs) as complex wells have more reservoir 
control and contact. Since their early 1990s commencement, 
complex wells have seen an increase in their field application12, 

13. In comparison to single lateral horizontal wells, maxi-
mum reservoir contact wells have lower cost per barrel and 
higher net present value (NPV)14, 15. While fishbone wells and 
MHFWHs can generate similar NPV, fishbone wells are more 
favorable since in their implementation, lower levels of uncer-
tainty are encountered16. 

Rate transient behavior of the complex well’s laterals is not 
fully understood in general, particularly in dual porosity and/
or dual permeability reservoirs. There is no available analyt-
ical model that predicts the complex well’s behavior along 
with their lateral’s interaction. 

There have been few studies conducted to solve this prob-
lem numerically. For instance, segmenting laterals and then 
superimposing results to get a final solution is used in a num-
ber of studies12, 17. Another approach used is representing each 
lateral as a partially penetrating well and then summing up 
their transient and pseudo steady-state solutions18. 

Artificial Intelligence and its Applications to Oil and 
Gas Reservoirs

Artificial intelligence applications have been proven effective 
in solving field development and optimization, and in com-
plex well design problems. Fuzzy logic, genetic algorithms, 
and acceleration routines were used in several studies to select 
optimal complex well design, location, and trajectory19-21. 
Furthermore, functional transformation, neuro simulators, 
dimension reduction techniques, fuzzy logic, stochastic model-
ing, and parallel predictive models were used to develop neuro 
simulators, forecast natural gas production for 20 years in the 
U.S., and develop a top-down reservoir model capable of iden-
tifying reservoir sweet spots, and estimating reserves22-26.

An artificial neural network (ANN) based model is a 
powerful tool that can learn the relationship between input 
parameters and their corresponding outputs. The relationship 
between input and output parameters, or the governing equa-
tion, can be linear or nonlinear. This feature of ANN becomes 
most useful when the relationship between inputs and outputs 
is not yet known. Although a trained ANN can predict a 
solution within a specific acceptable error range, it lacks the 
ability to explicitly state the relationship between input and 
output parameters. 

To predict output parameters, ANN relies on a number of 
weights and biases. At the training phase, the ANN develops 
and calibrates its weights and biases during the trial-and-error 
process linking the input layer to the output layer. To minimize 
the approximation error, the ANN uses the gradient descent 
technique in which the input layer is connected to the output 
layer through a number of user specified hidden layers, Fig. 
5. Each layer is connected to the other layers by neurons and 
transfer functions. The user chooses the transfer functions, 
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Fig. 5. A schematic showing how the input layer is connected to the output layer through a series of 
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which can be linear or nonlinear, that best suits the problem27. 
Table 1 is a list of commonly used transfer functions.

METHODOLOGY

The objective of this research is to use ANNs to develop an 
expert system that instantaneously and accurately performs 
the following tasks:

1.	 Forward Production Profile Expert System — Fixed 
Plateau Rate (FEx-P): The trained ANN in this expert 
system, predicts — within an acceptable error range — the 
complex well’s production profile. The FEx-P uses reservoir 
properties and complex well design parameters as inputs.

2.	 Inverse Well Architecture Design Expert System — Fixed 
Plateau Rate (IWEx-P): The trained ANN in this expert 
system, predicts — within an acceptable error range — a 
complex well’s design capable of delivering the user defined 
production profile. The IWEx-P uses the production profile 
and reservoir properties as inputs.

3.	 Inverse Reservoir Rock Properties Expert System — Fixed 
Plateau Rate (IREx-P): The trained ANN in this expert 
system, predicts — within an acceptable error range — the 
reservoir rock properties. The IREx-P uses the production 
profile and the complex well’s design parameters as inputs.

A large enough database that spans all possible ranges is 

needed in ANN training to achieve the previously stated goals. 

Subsequently, comparing a complex well’s performance against 

the MHFHWs performance is needed as a preliminary step. 

This comparison is needed to ensure that the complex wells can 

be an alternative to MHFHWs prior to ANN training. 

Name Input/Output Relation Icon MATLAB Function

Hard Limit
a = 0    n < 0 
a = 1    n ≥ 0

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

hardlim

Symmetrical Hard Limit
a = -1     n < 0 
a = +1    n ≥ 0

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

hardlim

Linear a = n

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

purelin

Saturating Linear
a = 0    n < 0 

a = n    0 ≤ n ≤1 
a = 1    n > 1

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

satlin

Symmetric Saturating Linear
a = -1    n < -1 

a = n    -1 ≤ n ≤1 
a = 1    n > 1

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

satlins

Log-Sigmoid

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

logsig

Hyperbolic Tangent Sigmoid

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 tansig

Positive Linear
a = 0    n < 0 
a = n    0 ≤ n

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

poslin

Competitive
a = 1    neuron with max n  
a = 0    all other neurons

Name Input/Output Relation Icon MATLAB 
Function 

Hard Limit a = 0    n < 0                                            
a = 1    n ≥ 0 

 

hardlim 

Symmetrical Hard 
Limit 

a = -1     n < 0                        
a = +1    n ≥ 0 

 

hardlim 

Linear a = n 

 

purelin 

Saturating Linear 
a = 0    n < 0                                         

a = n    0 ≤ n ≤1                    
a = 1    n > 1 

 

satlin 

Symmetric Saturating 
Linear 

a = -1    n < -1                        
a = n    -1 ≤ n ≤1                     

a = 1    n > 1 

 

satlins 

Log-Sigmoid 

 

 

logsig 

Hyperbolic Tangent 
Sigmoid 

 

 

tansig 

Positive Linear a = 0    n < 0                          
a = n    0 ≤ n 

 

poslin 

Competitive a = 1    neuron with max n 
a = 0    all other neurons 

 

compet 

 
Table 1. Commonly used transfer functions27 
 
 
 

𝑎𝑎 =
1

1 + 𝑒𝑒&'
 

𝑎𝑎 =
𝑒𝑒' − 𝑒𝑒&'

𝑒𝑒' + 𝑒𝑒&'
 

compet

Table 1. Commonly used transfer functions27

 
 
Fig. 6. Samples of different MHFHW architectures (left) and different complex well architectures (right) 
used in their production performance comparison. The red lines represent hydraulic fractures21. 
 
 
Reservoir Properties  Fluid Composition 
Reservoir Size (acres) 200 – 800 C1 1.00000 
Initial Reservoir Pressure Pi (psia) 4,000 – 6,000 C2 0.00000 
Reservoir Temperature (°F) 140 C3 0.00000 
Matrix Porosity (%) 5 – 10 iC4 0.00000 
Fracture Porosity (%) 1% – 10% of Matrix 

Porosity 
nC4 0.00000 

Matrix Permeability (i,j) (md) 1.0E-05 – 1.0E-04 iC5 0.00000 
Fracture Permeability (i,j) (md) 0.01 – 1.0 nC5 0.00000 
Reservoir Thickness (ft) 50 – 300 C6 0.00000 
Fracture Spacing (i,j,k) (ft) 1 – 5 C7+ 0.00000 

 
Table 2. The minimum and maximum limits of the reservoir and fluid properties  
 
 
 
Horizontal Mainbore Length (ft) 864 – 1836 
Number of Laterals 1 – 8 
Length of Laterals (ft) 382 – 1756 
Location of Mainbore (jth row) (middle row of 55, 77, 95 or 109 cells) 
Lateral Spacing (ft) 54 – 1,836 
Lateral Phase Angle (degrees) 45 
Lateral Placement Pattern Fishbone Pattern 
Wellbore Constant Pressure pwf (psi) 2,000 – 5,500 

 
Table 3. The parameters of the complex well design 
 
 
 

Fig. 6. Samples of different MHFHW architectures (left) and different complex well 
architectures (right) used in their production performance comparison. The red lines 
represent hydraulic fractures21.
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Comparing Performance of Complex Wells against 
MHFHWs 

To ensure the relevance in comparison, all numerical reservoir 
simulation cases, which were compared against each other, 
share the same reservoir conditions and parameters, fluid 
properties, and well operating conditions. Production profiles 
from several MHFHWs that differ in their designs were com-
pared against several complex wells that differ in their designs 
as well. Figure 6 shows a sample of the different complex 
wells and MHFHW architectures used in this comparison21. 

Data Gathering and Preparation 

To achieve acceptable accuracy from an ANN, the expert 
system needs to be trained using an accurate database that is 
significant in size, so as to be inclusive to different combina-
tions of input parameters. The challenge that has been faced 
in this research is the scarcity of complex well data in shale 
gas formations. It is desired to have 500+ complex well cases 
that capture variations in rock properties, production profiles, 
and well design. Currently, such a comprehensive database 
does not exist as it involves complex well operations in shale 
gas reservoirs. Therefore, training the ANN on real data is not 
possible at this time. To overcome this challenge we are utiliz-
ing a commercial reservoir simulation software that is capable 
of simulating dual permeability and/or dual porosity reser-
voirs. A large number of randomly generated shale gas models 
were generated. Their inputs and outputs were compiled to 
form the database that the ANN is receiving to conduct its 
training, validating, and testing.

All input and output parameters in the generated database 
have to capture the minimum and maximum limits set by the 
user. For example, if the user defines a reservoir thickness 
between 10 ft and 400 ft, and the complex wells have a num-
ber of laterals — between two and seven — then the database 
must include cases with reservoir thicknesses between 10 ft 
and 400 ft, and must include complex wells designed with 2, 
3, 4, 5, 6, and 7 laterals. All minimum and maximum limits of 
reservoir rock and complex well design parameters utilized in 

this investigation are presented in Tables 2 and 3, respectively. 
Furthermore, Tables 4, 5, and 6 show the input parameters of 
each of the three expert systems developed in this study. 

ANN Training and Optimization Workflow

The generated database consists of a large number of data sets. 
Each data set consists of reservoir properties, complex well 
design parameters, and a corresponding production profile. 
Data sets are divided into appropriate inputs and outputs based 
on the prediction mode, for either forward or inverse prediction 
applications. For each prediction mode, the database is divided 
into three groups, i.e., training, validation, and testing data sets. 

During the training phase, ANN calibrates its weights and 
biases until it reaches an acceptable error margin. During the 
subsequent validation phase, ANN gets exposed to new data 
sets, and it further calibrates its weights and biases. If the 
desired level of accuracy is not achieved during the validation 
phase, then the training phase needs to be repeated again, but 
the knowledge gained in the validation phase is kept by the 
ANN to better aid the next training phase. Once an accept-
able error is reached, then the testing phase begins. Through-
out the testing phase, the trained ANN gets introduced to 
a new testing data set, which was not shown to the expert 
either during the training or validation phases. If the desired 

Reservoir Properties Fluid Composition

Reservoir Size (acres) 200 – 800 C1 1.00000

Initial Reservoir Pressure Pi (psia) 4,000 – 6,000 C2 0.00000

Reservoir Temperature (°F) 140 C3 0.00000

Matrix Porosity (%) 5 – 10 iC4 0.00000

Fracture Porosity (%) 1% – 10% of Matrix Porosity nC4 0.00000

Matrix Permeability (i,j) (md) 1.0E-05 – 1.0E-04 iC5 0.00000

Fracture Permeability (i,j) (md) 0.01 – 1.0 nC5 0.00000

Reservoir Thickness (ft) 50 – 300 C6 0.00000

Fracture Spacing (i,j,k) (ft) 1 – 5 C7+ 0.00000

Table 2. The minimum and maximum limits of the reservoir and fluid properties

Horizontal Mainbore 
Length (ft) 

864 – 1836

Number of Laterals 1 – 8

Length of Laterals (ft) 382 – 1756

Location of Mainbore  
(jth row) 

(middle row of  
55, 77, 95, or 109 cells)

Lateral Spacing (ft) 54 – 1,836

Lateral Phase Angle 
(degrees) 

45

Lateral Placement Pattern Fishbone Pattern

Wellbore Constant Pressure 
pwf (psi) 

2,000 – 5,500

Table 3. The parameters of the complex well design
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accuracy level is not observed in the testing phase (blind test-
ing phase), then input combinations that are less represented 
and contribute more to error are identified. More cases rep-
resenting these input combinations are generated to be intro-
duced to the original database. Figure 7 is a workflow for the 
ANN training process29.

When the ANN is trained for the first time, it is always 
trained on the original input and output data set, without 
data manipulation, modifications, or functional links. This 
allows the user to experiment with data manipulation tech-
niques and functional links. The user will understand how the 
ANN responds to each change individually, and to a combi-
nation of changes. Accordingly, the original data set becomes 
a reference point for the user. At the optimization stage, the 
goal of the trainer becomes increasing ANN prediction accu-
racy. This is done by either modifying the ANN structure, by 
changing and introducing/or removing neurons, functional 
links, or new data sets. In other words, the user can introduce 
functional links, change the learning function, change the 
training function, change the transfer function, change the 
number of layers, change the number of neurons in some or 
all layers, and/or user data manipulation techniques. 

There is a difference in how an error is defined in forward 
prediction problems vs. inverse prediction problems. In a 
forward prediction problem, an error is simply the percent-
age of difference between the actual outcomes and predicted 
outcomes — in reference to actual outcomes. In this research, 

Category Parameter Unit

Well Design 
Parameters

Mainbore Length ft

Well Location with Respect 
to the Northern Reservoir 

Boundary
ft

Well Location with Respect 
to the Western Reservoir 

Boundary
ft

Number of Laterals

First Lateral Direction

1 - upward
2 - downward

Second Lateral Direction

Third Lateral Direction

Fourth Lateral Direction

Fifth Lateral Direction

Sixth Lateral Direction

Seventh Lateral Direction

Eighth Lateral Direction

First Lateral Spacing

ft

Second Lateral Spacing

Third Lateral Spacing

Fourth Lateral Spacing

Fifth Lateral Spacing

Sixth Lateral Spacing

Seventh Lateral Spacing

Eighth Lateral Spacing

First Lateral Length

ft

Second Lateral Length

Third Lateral Length

Fourth Lateral Length

Fifth Lateral Length

Sixth Lateral Length

Seventh Lateral Length

Eighth Lateral Length

Reservoir 
Properties

Drainage Area Acres

Reservoir Thickness ft

Initial Reservoir Pressure 
(pi)

psi

Well 
Operating 
Condition

Flowing BHP (pwf) psi

Reservoir 
Properties

Matrix Porosity (ϕm) fraction

Natural Fracture Porosity 
(ϕf)

fraction

Matrix Permeability (km) md

Natural Fracture 
Permeability (kf)

md

Natural Fracture Spacing ft

Table 4. The input parameters of the FEx-P

Category Parameter Unit

Reservoir 
Properties

Drainage Area Acres

Reservoir Thickness ft

Initial Reservoir Pressure 
(pi)

psi

Well Operating 
Condition

Flowing BHP (pwf) psi

Reservoir 
Properties

Matrix Porosity (ϕm) fraction

Natural Fracture Porosity 
(ϕf)

fraction

Matrix Permeability (km) md

Natural Fracture 
Permeability (kf)

md

Natural Fracture Spacing ft

Well 
Performance

Cumulative Production 
at Day 1

scf

Cumulative Production 
at Day 30

Cumulative Production 
at Day 60

…          …          …

…          …          …

Cumulative Production 
at Day 3,600

Table 5. The input parameters of the IWEx-P
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simulation production profiles represent the actual outcomes, 
and the ANN production profiles represent the predicted 
outcomes. On the other hand, inverse prediction problems 
are different than forward prediction problems in terms of 
error calculations. In inverse prediction problems, it would 
be misleading to define the error margins based on the pre-
diction accuracy of outputs, due to the non-unique nature of 
the inverse problems. The nature of the non-uniqueness of a 
solution is better explained by the case illustrated in Fig. 8, 
where the expert system is predicting the complex well design 
for a given production profile from a given set of reservoir 
properties. 

It is clear that the well design in the simulation model 
(actual outcome) and the predicted well design (predicted 
outcome) are totally different. Both wells have different main-
bore lengths, lateral lengths, lateral directions, lateral spacing, 
etc. Therefore, if the error was based on the ANN’s ability to 
reproduce the same well design, we would have been misled 
by a huge percentage error. Subsequently, going back to Fig. 
8, we realized that both wells were capable of producing the 
desired production profile from the same set of reservoir prop-
erties. In other words, the solution of this inverse prediction 
problem is not unique; therefore, several different well designs 
can reproduce the same production profile from the same set 
of reservoir properties. For this reason, we have implemented 
a closed loop error calculation in the inverse prediction prob-
lems, where the error is based on the predicted parameter’s 
ability to reproduce the desired production profile. 

RESULTS

The results of this study show that complex wells can meet 
or exceed the performance of MHFHWs. In addition, this 
research shows that a well-trained ANN is capable of accu-
rately and instantaneously predicting production profiles, 
reservoir properties, and complex well design parameters in 
shale gas reservoirs. At the initial stage of this research, it was 
observed that ANN prediction ability is improved, especially 
when production profiles are monotonically increasing. There-
fore, the cumulative production profiles were used instead of 
production rates in ANN training.

Complex Wells and MHFHW Comparison 

The outcomes of this numerical reservoir simulation model 
comparison highlight the fact that complex wells have the 
capability of meeting or exceeding the MHFHW’s overall 
cumulative production and plateau time. Figure 929 shows two 
examples of complex wells with higher production than the 
corresponding MHFHWs.

Further analysis of the different complex well architec-
tures used and their production profiles, has led to a specific 
complex well configuration that has the tendency to mimic 
the MHFHW production profiles, Fig. 1029. This general 

Category Parameter Unit

Well Design 
Parameters

Mainbore Length ft

Well Location with 
Respect to the Northern 

Reservoir Boundary
ft

Well Location with 
Respect to the Western 

Reservoir Boundary
ft

Number of Laterals

First Lateral Direction

1 - upward 
2 - downward

Second Lateral Direction

Third Lateral Direction

Fourth Lateral Direction

Fifth Lateral Direction

Sixth Lateral Direction

Seventh Lateral Direction

Eighth Lateral Direction

First Lateral Spacing

ft

Second Lateral Spacing

Third Lateral Spacing

Fourth Lateral Spacing

Fifth Lateral Spacing

Sixth Lateral Spacing

Seventh Lateral Spacing

Eighth Lateral Spacing

First Lateral Length

ft

Second Lateral Length

Third Lateral Length

Fourth Lateral Length

Fifth Lateral Length

Sixth Lateral Length

Seventh Lateral Length

Eighth Lateral Length

Reservoir 
Properties

Reservoir Thickness ft

Initial Reservoir Pressure 
(pi)

psi

Well 
Operating 
Condition

Flowing BHP (pwf) psi

Well 
Performance

Cumulative Production 
at Day 1

scf

Cumulative Production 
at Day 30

Cumulative Production 
at Day 60

…          …          …

…          …          …

Cumulative Production 
at Day 1,080

Table 6. The input parameters of the IREx-P
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complex well architecture became a subject of several well 
configuration sensitivities and comparative studies with the 
goal of matching the MHFHW production profiles. An exact 
match was achieved by the complex well configuration shown 
in Figs. 11 and 1229. This complex well configuration has a 
horizontal mainbore and two 45° laterals that share the same 
origin on the mainbore. Each lateral has a uniformly spaced 
mini-hydraulic fracture. All mini-hydraulic fractures share the 
same height, width, permeability, and porosity as the massive 
hydraulic fractures in the MHFHW in this comparison. This 
complex well configuration can match any MHFHW as long 
as changes in mainbore and lateral lengths are proportional, 
and while hydraulic and mini-hydraulic fracture spacing is 
kept the same, on both complex wells and MHFHWs. 

A number of sensitivities were performed on the mini-hy-
draulic fractures and the massive hydraulic fractures lengths. 
Cases that yielded matching profiles are highlighted in Table 
7. These matching cases indicate that the half-lengths of the 
mini-hydraulic fractures of the matching complex well config-
urations are in correlation with the half-lengths of the massive 
hydraulic fractures of the MHFHW, as per Eqn. 1. This equa-
tion is applicable to dual porosity reservoirs with isotropic 
natural fractures and matrix permeability (km-x = km-y = km-z 
and kf-x = kf-y = kf-z).

Mini-HF HL = (MHF HL – 100) / 2                              (1)

where Mini-HF HL is mini-hydraulic fracture half-length (ft), 
and MHF HL is massive hydraulic fracture half-length (ft).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 6. The input parameters of the IREx-P 
 

 
 

 
 
Fig. 7. Workflow for the ANN training process21. 
 
 
 

Seventh Lateral Spacing 

Eighth Lateral Spacing 

First Lateral Length 

ft 

Second Lateral Length 

Third Lateral Length 
Fourth Lateral Length 

Fifth Lateral Length 
Sixth Lateral Length 

Seventh Lateral Length 

Eighth Lateral Length 

Reservoir Properties Reservoir Thickness ft 

Initial Reservoir Pressure (pi) psi 
Well Operating Condition Flowing BHP (pwf) psi 

Well Performance 

Cumulative Production at Day 1 

scf 

Cumulative Production at Day 30 
Cumulative Production at Day 60 

…                   …                      … 

…                   …                      … 
Cumulative Production at Day 1,080 

Fig. 7. Workflow for the ANN training process29. 

 
Fig. 8. A comparison of the simulation vs. the ANN results of well designs and production profiles (0.02% 
error based on production profiles). 
 

 

Fig. 8. A comparison of the simulation vs. the ANN results of well designs and 
production profiles (0.02% error based on production profiles).
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Fig. 9. Two examples of complex well architectures that are over-performing two corresponding MHFHWs29.

Fig. 10. Complex well configurations with a tendency to mimic the MHFHW production profiles29.
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Fig. 9. Two examples of complex well architectures that are over-performing two corresponding 
MHFHWs29. 
 

 
 
Fig. 10. Complex well configurations with a tendency to mimic the MHFHW production profiles29. 
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Fig. 11. A five stage MHFHW with 0.03 ft width and 150 ft half-length, and complex wells with six mini-
hydraulic fractures of 0.03 ft width and 25 ft half-length29. 
 

 
 
Fig. 12. An 11 stage MHFHW with 0.03 ft width and 150 ft half-length, and complex wells with 14 mini-
hydraulic fractures of 0.03 ft width and 25 ft half-length29. 
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Fig. 11. A five stage MHFHW with 0.03 ft width and 150 ft half-length, and complex wells with six mini-hydraulic fractures of 0.03 ft width and 25 ft half-length29.
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Fig. 12. An 11 stage MHFHW with 0.03 ft width and 150 ft half-length, and complex wells with 14 mini-
hydraulic fractures of 0.03 ft width and 25 ft half-length29. 
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Fig. 12. An 11 stage MHFHW with 0.03 ft width and 150 ft half-length, and complex wells with 14 mini-hydraulic fractures of 0.03 ft width and 25 ft half-length29.



SAUDI ARAMCO JOURNAL OF TECHNOLOGY   SPRING 2019

Forward Production Profile Expert System —  
Fixed Plateau Rate (FEx-P)

Within its training range and for any given complex well 
design parameters, and any given shale gas reservoir prop-
erties, the FEx-P can accurately and instantaneously predict 
cumulative production profiles. The ANN design parameters 
of this expert system are shown in Table 8.

To improve the accuracy levels during training of the ANN, 
simple functional links and complex functional links, Table 
9, and data manipulation techniques, Table 10, were intro-
duced as input and output neurons. Data manipulation tech-
niques have noticeably reduced the prediction error, but its 
primary contribution was reducing the observed oscillations 
in predicted profiles. Trial and error, quantification of the 
error source, the lessons learned from Alqahtani and Ertekin 
(2017)28, and work on the FEx-P expert system were all used 
to come up with the optimum combination of functional 
links, data manipulation techniques, and ANN structure.

Predicting the time for the end of the plateau period is crit-
ically important for wells operating under fixed plateau rate 
conditions. At initial stages of training of the FEx-P, time at 
the end of the plateau was an output parameter that the ANN 
was trained to predict, as well as the cumulative production 
profile. Subsequently, further analysis of the results showed 

Massive Hydraulic Fractures Mini-Hydraulic Fractures

Half Length (ft) Total Length (ft) Half Length (ft) Total Length (ft)

150 1,500 25.000 300

250 2,500 41.667 500

350 3,500 58.333 700

450 4,500 75.000 900

550 5,500 91.667 1,100

650 6,500 108.333 1,300

750 7,500 125.000 1,500

Table 7. Results of a sensitivity study performed on the massive hydraulic fracture lengths and the mini-hydraulic fracture lengths, where matching cases are highlighted 
with the same color

Network Type
Feed-forward with 
Back Propagation

Number of Hidden Layers 3

Number of Neurons for Hidden 
Layers

(6, 10, 14)

Number of Case Scenarios 743

Train, Validate, Test Ratio (%) (75, 24, 1)

Training Function
Trainscg  

(Scaled Conjugate 
Gradient)

Transfer Functions (Tansig, Tansig, Logsig)

Learning Function Learngdm

Performance Function
Msereg (Mean Square 

Error with Reg.)

Minimum Performance Goal 5E-05

Maximum Number of 
Validation Increases

1,000

Maximum Number of Training 
Iterations

8,000

Minimum Gradient Magnitude 1E-06

Table 8. The ANN design parameters of the FEx-P

Number Functional Link
Input or 
Output

FL 1 Matrix Porosity * Fracture Porosity Input

FL 2 SQRT [Matrix Permeability^2+ Fracture Permeability^2] Input

FL 3 Maximum (Eigen Values — Matrix Permeability and Fracture Permeability) Input

FL 4 Mainbore Length/Reservoir Area Input

FL 5 Mainbore Length/Reservoir Thickness Input

FL 6 Total Wellbore Length (Mainbore + All Laterals) Input

FL 7 Reservoir Thickness * Reservoir Area * Matrix Porosity Input

FL 8 Reservoir Thickness * Reservoir Area * Matrix Porosity * Matrix Permeability Input

FL 9 Reservoir Thickness * Reservoir Area * Matrix Porosity * Fracture Permeability Input

Table 9. The functional links of the FEx-P
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that predicting time at the end of the plateau was a source 
of high prediction error, and it was consequently removed to 
improve accuracy. The ANN was not able to make an accu-
rate prediction of time at the end of the plateau because it was 
not consistent in all cases, and in some cases it did not have a 
logical connection to the input parameters. 

Since all cases have a 10-year production profile, the data-
base was consequently divided into two categories. The first 
category has a known time at the end of the plateau, and 

the second category has an unknown time at the end of the 
plateau, because its plateau was extended for more than 10 
years. All cases in the second category were given a default 
value of 10 years as the time at the end of the plateau. The 
introduction of the inaccurate default value of 10 years to all 
cases in the second category masked the relation between the 
input parameters and the time at the end of the plateau, which 
caused the ANN to make erroneous predictions. Therefore, 
time at the end of the plateau was dropped from the output 
parameters. Consequently, the accuracy of the predicted 

Number Parameter Input or Output

DM 1 1/(Matrix Porosity) Input

DM 2 1/(Fracture Porosity) Input

DM 3 1/(Matrix Permeability) Input

DM 4 1/(Fracture Permeability) Input

Table 10. The data manipulation techniques of the FEx-P

Fig. 13. Two examples of the simulation results vs. the ANN predictions of an 
original test case (1.52% and 3.77% error): (a) shows a good match between the 
ANN and the simulation, and a time at the end of the plateau of 1,300 days; (b) 
shows a good match between the ANN and the simulation, and a plateau that 
extends beyond the 10-year time frame of the study.
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Fig. 14. The FEx-P logical response to reservoir thickness changes. As expected, 
the higher the reservoir thickness, the higher the cumulative production, and vice 
versa.thickness the higher the cumulative production, and vice versa. 
 

 
 
Fig. 15. The FEx-P logical response to initial reservoir pressure changes. As expected, the higher the pi, 
the longer its time at the end of the plateau, and vice versa. 
 
 
 

 
Original Test 

Cases 
Blind 
Cases 

Average Error (%) 4.06 5.27 
Maximum Error (%) 7.14 13.80 
Minimum Error (%) 1.52 1.82 

 
Table 11. The original test cases and blind cases errors of the FEx-P 
 
 

 Base Case 1 ∆Z - ∆Z - - ∆Z ++ ∆Z + 
Area 600 600 600 600 600 
Thickness 270 200 150 320 300 
Initial Pressure 5,900 5,900 5,900 5,900 5,900 
Plateau Rate 15,000,000 15,000,000 15,000,000 15,000,000 15,000,000 
Matrix Porosity 0.087 0.087 0.087 0.087 0.087 
Fracture Porosity 0.0074 0.0074 0.0074 0.0074 0.0074 
Matrix 
Permeability 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05 
Fracture 
Permeability 0.745 0.745 0.745 0.745 0.745 
Spacing Fracture 3 3 3 3 3 

 
Table 12. The reservoir thickness practicality test cases of the FEx-P 
 

 

Fig. 15. The FEx-P logical response to initial reservoir pressure changes. As 
expected, the higher the pi, the longer its time at the end of the plateau, and vice 
versa.

Original Test Cases Blind Cases

Average Error (%) 4.06 5.27

Maximum Error (%) 7.14 13.80

Minimum Error (%) 1.52 1.82

Table 11. The original test cases and blind cases errors of the FEx-P
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production profiles has increased significantly. Nonetheless, 
a straight line representing cumulative plateau production vs. 
time was introduced to the FEx-P output plots — the green 
line in Figs. 13, 14, 15 — which allows users to visually esti-
mate the time at the end of the plateau period. Time at the 
end of the plateau is estimated at the point when the predicted 
cumulative production profile deviates from the cumulative 
plateau production line. 

Table 11 shows the minimum, maximum, and average 
prediction errors of FEx-P. The neural network training, the 
training performance, and the regression plots are not shown 
in this article, but can be found in the original dissertation29. 
Figure 13 shows two random test cases, where the green 
straight line represents the cumulative production of a contin-
uous plateau vs. time to allow for visual identification of time 
at the end of the plateau.

Practicality Test of the FEx-P 

A robust expert system, similar to the FEx-P, should capture 
expected logical response to sensitivities in input parameters. 
For example, if initial pressure is increased while keeping all 
other parameters fixed, the accurate response of the expert 
system should be an increase in the end of the plateau time. If 
an ANN is overtrained, it would memorize outputs and have 
low prediction errors during training or validation processes. 

Base Case 1 ∆Z - ∆Z - - ∆Z ++ ∆Z +

Area 600 600 600 600 600

Thickness 270 200 150 320 300

Initial Pressure 5,900 5,900 5,900 5,900 5,900

Plateau Rate 15,000,000 15,000,000 15,000,000 15,000,000 15,000,000

Matrix Porosity 0.087 0.087 0.087 0.087 0.087

Fracture Porosity 0.0074 0.0074 0.0074 0.0074 0.0074

Matrix Permeability 3.00E-05 3.00E-05 3.00E-05 3.00E-05 3.00E-05

Fracture Permeability 0.745 0.745 0.745 0.745 0.745

Spacing Fracture 3 3 3 3 3

Table 12. The reservoir thickness practicality test cases of the FEx-P

Base Case 2 pi - - pi - pi + pi ++

Area 200 200 200 200 200

Thickness 105 105 105 105 105

Initial Pressure 5,200 4,800 5,000 5,400 5,600

Plateau Rate 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000

Matrix Porosity 0.063 0.063 0.063 0.063 0.063

Fracture Porosity 0.0018 0.0018 0.0018 0.0018 0.0018

Matrix Permeability 8.00E-05 8.00E-05 8.00E-05 8.00E-05 8.00E-05

Fracture Permeability 0.496 0.496 0.496 0.496 0.496

Spacing Fracture 5 5 5 5 5

Table 13. The initial reservoir pressure practicality test cases of the FEx-P

Network Type
Feed-Forward with  
Back Propagation

Number of Hidden Layers 4

Number of Neurons for Hidden 
Layers

(8, 6, 10, 14)

Number of Case Scenarios 576

Train, Validate, Test Ratio (%) (75, 24, 1)

Training Function
Trainscg  

(Scaled Conjugate 
Gradient)

Transfer Functions
(Tansig, Tansig, Tansig, 

Tansig)

Learning Function Learngdm

Performance Function
Msereg  

(Mean Square Error  
with Reg.)

Minimum Performance Goal 5E-05

Maximum Number of 
Validation Increase

1,000

Maximum Number of Training 
Iterations

8,000

Minimum Gradient Magnitude 1E-06

Table 14. The ANN design parameters of the IWEx-P
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Consequently, they would have higher prediction errors in 
blind tests and practicality tests. Practicality tests show that the 
trained ANN understands the effect that each input parameter 
has on the outputs, and proves that the ANN is not over-
strained. Accordingly, a trained ANN that does not respond 
accurately or logically to sensitivities, would still need more 
training, and should not be considered as an expert system. 

In this section, two random data sets were selected to test 
for practicality response of the expert system. Reservoir thick-
ness was selected as the sensitivity parameter in the first data 
set, and initial reservoir pressure was selected as the sensitivity 
parameter in the second data set. Table 12 shows values of 
the thickness sensitivities, where two sensitivity cases have 
lower thickness values than the base case, and two other sen-
sitivity cases have higher thickness values than the base case, 
while keeping all other parameters fixed. Figure 14 shows the 
response of the FEx-P to changes in thickness. As expected, 
the higher the reservoir thickness, the higher the cumulative 
production, and vice versa. 

On the other hand, Table 13 shows values of the initial res-
ervoir pressure (pi) sensitivities, were two sensitivity cases have 
lower pi values than the base case, and two other sensitivity 
cases have higher pi values than the base case, while keeping 
all other parameters fixed. Figure 15 shows the response of 
the FEx-P to changes in pi. As expected, the higher the pi, the 
longer its time at the end of the plateau, and vice versa.

Inverse Well Architecture Design Expert System — 
Fixed Plateau Rate (IWEx- P)

Within its training range, and for any given complex well 
design and any given shale gas reservoir properties, the 
IWEx-P can accurately and instantaneously propose a complex 
well design capable of producing user specified cumulative 
production profiles from the user specified rock properties. 
The prediction error of the IWEx-P was calculated based on 
comparing the original — input — production profile against 
the production profile generated by the proposed complex well 
design, due to the non-uniqueness of the solution. The ANN 
design parameters of this expert system are shown in Table 
14. The functional links, Table 15, and data manipulation 
techniques, Table 16, were introduced to the input and output 
layers during ANN training to reduce the prediction error. 

Table 17 shows the maximum, minimum, and average 

prediction error of the IWEx-P. The ANN training, training 

performance, and regression are not shown in this article, but 

can be found in the original dissertation29. Figure 16 shows 

representative original test cases. In addition, Fig. 17 shows 

representative blind test cases, where the green straight line 

represents the cumulative production of a continuous plateau 

vs. time, to allow for visual identification of time at the end of 

the plateau.

Inverse Reservoir Rock Properties Expert System — 
Fixed Plateau Rate (IREx- P)

For any given complex well design and any given three-year 

cumulative gas production profile, the IREx-P can accurately 

and instantly predict the corresponding shale gas reservoir 

property suite. Several ANNs were trained to achieve this 

goal, but they were not reaching the desired accuracy levels. 

Further analysis indicated that the root cause of the high 

closed loop production errors were mainly controlled by 

parameters such as natural fracture permeability, drainage 

area, and matrix porosity. 

The introduction of a number of functional links and data 

manipulation techniques that target natural fracture per-

meability, drainage area, and matrix porosity did not result 

in a significant reduction in closed loop production error. 

Number Functional Link Input or Output

FL 1 Total Wellbore Length (mainbore + all laterals) Input

FL 2 Drainage Area/Total Wellbore Length Input

FL 3 Plateau Rate — Actual Initial Rate Input

FL 4 Cumulative Production at End of Year 10 — Actual Initial Rate Input

FL 5 Cumulative Production at End of Year 10 — Drainage Area Input

Table 15. The functional links of the IWEx-P

Number Parameter
Input or 
Output

DM 1 Mainbore Length/54 Input

DM 2
Well Distance from the j 

Boundary/54
Input

DM 3
Well Distance from the j 

Boundary/54
Input

Table 16. The data manipulation techniques of the IWEx-P

Original Test 
Cases

Blind Cases

Average 
Error (%)

2.94 14.64

Maximum 
Error (%)

8.59 55.61

Minimum 
Error (%)

0.00 0.81

Table 17. The original test case and blind case errors for the IWEx-P
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Therefore, a new approach that connects four trained ANNs 
in a series to form the IREx-P expert system was used. The 
first ANN predicts the natural fracture permeability; the sec-
ond ANN predicts the drainage area; the third ANN predicts 
the matrix porosity, and finally, the fourth ANN predicts all 

other rock properties. 
The first ANN is trained on the original set of input param-

eters, and it makes accurate predictions of natural fracture 
permeability, thereby reducing the closed loop error. The 
second ANN uses the original input parameters plus natural 
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Fig. 16. A comparison of the simulation results (a) vs. the forward ANN production predictions (b), using 
the ANN predicted well design parameters (8.59% and 0.02% error — original test cases). 
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Fig. 16. A comparison of the simulation results (a) vs. the forward ANN production predictions (b), using the ANN predicted well design parameters (8.59% and 0.02% 
error — original test cases).

 
Fig. 17. A comparison of the simulation results (a) vs. the forward ANN production predictions (b), using 
the ANN predicted well design parameters (0.81% error and 12.55% — blind test cases): (a) shows a 
good match between the ANN and the simulation, and a time at the end of the plateau of 1,000 days; (b) 
shows a decent match between the ANN and the simulation, and a time at the end of the plateau of 100 
days. 
 

 
 
 
 
 
 

 
Table 18. The original test cases errors for the IREx-P. 
 

 
Fig. 18. A comparison of the simulation results (a) vs. the forward ANN production predictions (b), using 
the ANN predicted reservoir properties (3.56% error — an original test case, and 11.97% error — a blind 
test case). 
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Fig. 17. A comparison of the simulation results (a) vs. the forward ANN production predictions (b), using the ANN predicted well design parameters (0.81% error and 
12.55% — blind test cases): (a) shows a good match between the ANN and the simulation, and a time at the end of the plateau of 1,000 days; (b) shows a decent match 
between the ANN and the simulation, and a time at the end of the plateau of 100 days.
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fracture permeability values predicted by the first ANN, and 
makes accurate drainage area predictions — which helps in 
further lowering the closed loop error. The input parameters 
in the third ANN are the original input parameters, the nat-
ural fracture permeability values predicted by the first ANN, 
and the drainage area values predicted by the second ANN. 
The third ANN makes accurate predictions of the matrix 
porosity. Using this workflow, the three parameters that 
contribute most to the high close-loop production error are 
predicted accurately. The fourth ANN predicts the remaining 

rock properties by using the original input parameters plus 
predictions of the first, second, and third ANN.

Table 18 shows the maximum, minimum, and average 
prediction errors of the IREx-P. The neural network training, 
the training performance, and the regression plots for all four 
ANNs used in the IREx-P, are found in the original disserta-
tion29. Figure 18 shows representative original and blind test 
cases. 

CONCLUSIONS

The results of the presented expert system, in its forward and 
inverse prediction modes, prove that a well-trained ANN is 
capable of making fast and accurate predictions. These results 
increase confidence in utilizing ANNs to solve petroleum engi-
neering problems. It also opens the door for future work to be 
conducted. For example, in this work all complex well con-
figurations were varied in the X-Y plain. In future work, the 
complex well design can be varied in the Z direction where 
laterals can have an up or down dip. As another example, in 
this work, a single set of gas properties was used and in future 
work gas properties could be varied and added as input or 
output parameters. Finally, results presented in this article 
increase the level of confidence in using complex wells as an 
alternative to MHFHWs.
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ABSTRACT 

Water cut measurement becomes essential in fields where there 
is significant water production, especially when combined 
with gas production, making the measurement of all three 
phases difficult. In other words, water cut measured values are 
affected by the presence of gas near the surface. Therefore, the 
objective of this study is to estimate the water cut in high gas-
oil ratio (GOR) wells with values greater than 2,000 standard 
cubic ft/stock tank barrel (scf/stb)1.

One of the trusted methods in measuring water cut is the 
multiphase flow meter (MPFM). This equipment gives accu-
rate and reasonable values at typical conditions where there 
are no flow assurance issues at the surface such as free gas, 
slug, or emulsions. It is worth mentioning that there are very 
limited MPFMs applicable for a high GOR environment. A 
model was developed with various inputs combined from 
downhole and surface sections of the well to better calculate 
water cut where free gas exists, obtaining these parameters on 
a real-time basis.

Analytical and empirical models are available in the litera-
ture to provide an accurate estimation of water cut at various 
conditions. The developed artificial neural network (ANN) 
model was compared to existing models with similar appli-
cations. It was also validated against actual measurements 
from existing test separators and wellhead samples. The aver-
age absolute percentage error obtained upon comparing the 
developed model to the examined ones, and the actual values, 
was significantly reduced to 4.2%. This drastic improvement 
in water cut estimation was due to the use of a wide range 
of surface and subsurface parameters, provided that they are 
attained on a real-time basis.

The leverage of knowing the correct water cut is quite 
imperative to better manage reservoirs in the case of abnormal 
conditions such as a high GOR. There are few MPFMs in the 
industry that are applicable for high GOR wells, but not yet 
trial tested, thereby providing an opportunity for the engineer 
to have a practicable model to estimate water cut on a real-
time basis.

INTRODUCTION

Water cut measurement becomes essential in fields with high 
water production. Oil companies tend to produce oil, and to 
maximize recovery, avoid the excessive production of water. 
This mandates monitoring the water cut during the early life 
of the well. To avoid a scenario of producing unnecessary 
water, an accurate measurement of the water cut is attained. 
Nevertheless, water cut is a very important input in designing 
the surface facilities at the early stage of the field. Surface 
facilities, including water and gas handling or processing 
equipment, are designed based on predefined calculations of 
the water cut and gas-oil ratio (GOR). 

As a key parameter, the water cut measurement is import-
ant when the reservoir pressure is lower than the bubble point 
pressure, where gas can cause major errors in measurement 
rates and the water cut measurement. An inaccurate input 
value of water cut might underestimate or overestimate the 
capital expenditure (CAPEX), which might require an unex-
pected upgrade of the handling facilities at a later stage of 
field production. Figure 1 shows the impact of water produc-
tion on the required capital expenditure for processing high 
volumes of water and gas2. Also, another observation is that it 
is more expensive to treat water, with a minor additional cost 
to treat gas. For this reason, water cut was considered as the 
calculation output rather than gas because a water processing 
facility has more impact on capital expenditure than a gas 
processing facility.

Holistic Evaluation of Water Cut in High GOR 
Wells for Better Production Management

Mohammad S. Al-Kadem, Dr. Dhafer A. Al-Shehri, Dr. Mohamed Mahmoud, and Dr. Rahul N. Gajbhiye

 
 

 
 
Fig. 1. The impact of water and gas production on facility costs2. 
 
 
 

 
 
Fig. 2. Impact of a high GOR on line pressure drop3. 
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Fig. 1. The impact of water and gas production on facility costs2.
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The importance of water cut measurement is not limited 
to the design of the surface facilities, but is also a critical 
parameter to manage reservoirs. An accurate measurement 
will enable decision makers to provide advice to shut-in or 
sidetrack wells with high water cuts, thereby maintaining oil 
production in the field. Also, reservoir simulation will require 
an accurate water cut measurement as an input to ensure the 
precision of the simulation model for engineers to forecast 
field production, and advise on any additional required action 
that would sustain or enhance the oil recovery.

Monitoring the water cut could lead to maximizing recov-
ery instead of maximizing production, thereby jeopardizing 
the health of the reservoir. There are available technologies 
and software to monitor water cut on a real-time basis with 
the objective of maximizing the recovery, avoiding the need of 
considering secondary or tertiary enhanced oil recovery.

Another important aspect of water cut measurement in 
high GOR wells is to explore the flow assurance problems 
when producing high water and gas volumes at the surface. 
Two flow issues are addressed as:

1.	 High water/gas production might cause corrosion: 
Chemical corrosion is caused by soluble organic acids 
within the produced formation water or carbon dioxide 
within gas in the reservoir. These components react with 
the metal and cause severe pitting.

2.	 When there is a high GOR produced at the surface, line 
pressure drop increases, which lowers oil production, 
exerting a high backpressure on the surface line, Fig. 23.

More sensitivity analysis was performed to study high 
water cut and high GOR on an inflow performance relation-
ship, and a tubing performance relationship model. The forces 
affecting the tubing performance relationship curve are:

 

𝑃𝑃"# = 𝑓𝑓(𝑃𝑃"', ∆𝑃𝑃#, 𝜌𝜌𝜌𝜌ℎ)           (1) 
 
 
∆𝑃𝑃# 

 

𝑊𝑊𝑊𝑊 = [∑ 𝑤𝑤34
5
467 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠?𝑤𝑤74,@𝑥𝑥@ + 𝑏𝑏74DE + 𝑏𝑏3                 (2) 

 

 

 

 

 

 

 

 

 

				           (1)

where Pwf is the flowing bottom-hole pressure, Pwh is the 

flowing wellhead pressure, ∆Pf is the pressure drop due to fric-
tion, and pgh is the hydrostatic component.

Referring to the hydrostatic component, density is highly 
affected by the presence of high water production or/and high 
GOR.

A GOR of more than 2,000 standard cubic ft/stock tank 
barrel (scf/stb) is considered in this article1 for reservoir types. 
The type of reservoir that is addressed in this article is consid-
ered to be volatile oil based on the standard classification of 
reservoirs based on the GOR in Table 1.

WATER CUT METERING TECHNOLOGIES

A Microwave-based Water Cut Monitoring Technology

A device was developed to measure water cut using micro-
wave signals4. This is a cost-effective technology where it 
accounts for oil composition, temperature variation, water 
salinity, crude properties, and water conductivity. It is a com-
pact system and requires a small footprint. Microwave signals 
transmitted through a reflection area from fluids are based on 
strong polarity, which shows that there is high permittivity 
due to the strong electrical energy where water has a polarity 
larger than oil. The drawback of this technology is that it will 
measure water cut inaccurately when there is free gas at the 
surface, and also when emulsion is taking place at the surface.

Magnetic Inductive Flow Multiphase Meter

A magnetic inductive flow multiphase meter has a partial sep-
aration separator to separate liquid from gas and a Coriolis 
flow meter5. This meter was developed for high GOR appli-
cations. It can measure wells rates from 100 barrels per day 
(bpd) to 15,000 bpd, and with a GOR up to 80,000 scf/stb. 
The measurement is based on a microwave technology where 
fractions of flow rates in the pipe are measured. The accuracy 
of oil rate is 5%, and the gas rate is 1% to 2%.

Portable Multiphase Production Tester

This is a portable multiphase flow meter (MPFM) with a gas 
volume fraction range from 10% to 20% for high water cut 
applications6. A water cut meter is one of the meter compo-
nents that is not affected by salinity, and is insensitive to low 
entrapped gas. It can also measure high oil flow rates and high 
water cut.
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Reservoir Type GOR

Black Oil < 2,000

Volatile Oil 2,000 to 3,300

Gas Condensate 3,300 to 50,000

Table 1. Classification of reservoirs based on GOR
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Weatherford Water Cut Meter

This meter is a Weatherford water cut meter, which has two 
components: a water cut monitoring sensor, and Coriolis flow 
meter7. The measurement is independent of density changes, 
but is applicable for a low GOR — up to 550 scf/stb, and a 
water cut of 5% to 42%. The infrared meter measures water 
cut based on near infrared absorption spectroscopy8 where 
water absorbs large amounts of electromagnetic energy. This 
meter provides a real-time measurement, whereas accuracy 
and the availability of real-time measurements can lead to cor-
rective action in a timely manner.

Trial Test of Multiple MPFMs

MPFM technology has been rolled out in the industry for the 
past 20 years9. There is no such MPFM that operates with 
a high GOR and high volume fraction of more than 95%. 
Three MPFMs were trial tested for multiple wells with a high 
GOR, but none of them succeeded. Liquid rates at high gas 
volume fraction started to diverge because uncertainty starts 
to increase, due to the rapid change of flow regimen; mist, and 
annular at high gas fraction; which also affects the oil rates.

Permanent Downhole Water Cut Measurement

This article addresses various techniques for the permanent 
downhole water cut measurements10:

•	 Relative permittivity where there is a high polarity or per-
mittivity for water.

•	 Near infrared where water absorbs more energy at higher 
wavelengths.

•	 Time domain transmissometry, where it measures the 
transmission through water, oil, or gas, where transmis-
sion is slower in water due to high density.

•	 The Coriolis Effect, where water has the minimum oscil-
lation frequency. 

•	 Gamma ray absorption for radioactive meters, where the 
produced water has higher radioactivity than oil or gas.

These techniques are for oil applications where a low GOR 
is encountered. They are compared based on environmental 
impact, equipment reliability, measurement accuracy, and 
power requirements.

Technology of Optimization of Production of Liquid 
Hydrocarbons from Reservoirs Containing Oil or 
Condensate with High GOR

A new technology for testing wells with a high GOR is called 
Technology for the Optimization of Production (TOP). This 

technology is basically a pressure regulator installed down-
hole along the tubing to control the condensate production 
for high GOR wells11. This regulator controls the flowing 
bottom-hole pressure (Pwf), to keep it at the optimum pres-
sure at which gas is kept in the condensate and reduces the 
condensate flow, while also maintaining the Pwf to avoid any 
unnecessary reduction. The range of applicability of GOR is 
up to 5,000 scf/stb.

High Gas ABB VIS MPFM

An ABB Group vega isokinetic sampling MPFM is a non-
gamma meter that measures individual oil, water, and gas 
rates for wells with a high gas volume fraction of more than 
90%12. The article explained a compact system of this meter-
ing technology where liquid and gas are then measured sep-
arately as single phases with considerable accuracy with no 
calibration required. Overall flow rates are calculated through 
the sampling ratio, i.e., the ratio between the probe and the 
pipe areas, and the gas flow rate is measured separately using 
a venturi meter as part of the MPFM body. The accuracy of 
this meter measurement can reach up to ± 5% in water cut, 
yet this meter has not been trial tested in the field.

WATER CUT ESTIMATION MODELS

High GOR Wells Optimization

Empirical observations, tools and examples are demonstrated 
in gas handling for oil wells13. Wells with the average GOR 
of 17,000 scf/stb were studied and optimized. Wells with high 
GOR were classified into two categories; restricted (choked 
back) and unrestricted. Also, challenges of excessive water, 
gas, and solutions were explored. Environmental impacts due 
to flaring gas were assessed when the design of gas processing 
facilities were underestimated.

A Model for Predicting Water Cut in Oil Reservoirs

This article proposed a new model for forecasting water cut 
considering exponential analysis (Arps) where many variables 
are constant14. Five models were discussed: Ershaghi-Omor-
egie, Liu, Warren, Purvis, and Lawal. The models with their 
corresponding equations are listed next.

Utilization of Downhole Sensor Data to Estimate 
Water Cut

Three published papers15-17, developed an analytical method to 
estimate rates and water cut using real-time data from electric 
submersible pump (ESP) downhole pressure and temperature 
sensors. The range of applicability in the GOR was targeted 
for black oil applications. Also, this method is applicable for 
wells with ESPs only.
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Horizontal Well Water Cut Estimation due to Water 
Coning

Water cut in horizontal wells is indescribable by analytical 
models for homogeneous reservoirs. A new model is proposed 
using a statistical variogram as the best fit model between the 
water cut and the recovery factor in horizontal wells18. The 
modeled variogram is a function of reservoir dip angle, oil 
column thickness, well construction, and permeability anisot-
ropy. The model was addressed to oil applications only.

STUDY MOTIVATION

Little Work Done to Estimate Water Cut for High GOR

Based on the literature review in the previous section, little 
work was focusing on estimating water cut in high GOR 
wells. One technology, magnetic inductive flow meter, was 
examined for high GOR wells — GOR up to 80,000 scf/stb 
— with high accuracy in the water cut and rates measurement. 
Another technology was discussed, TOP, which is a pressure 
regulator to control the excessive production of condensate in 
high GOR wells. A model for classifying and assessing wells 
with a high GOR was developed to better optimize the wells’ 
oil production and avoid condensate production. 

Limited Meter Technology for High GOR Wells

One of the conventional methods in measuring water cut is 
the MPFM. This equipment gives accurate and reasonable 
values at typical conditions, however, they do not perform 
well at certain conditions. There is no such MPFM applica-
ble for high GOR environments. MPFMs measure inaccurate 
water cut, but measure oil rate in isolation of the MPFM. It 
will be a considerable addition to the industry when coming 
out with a new methodology that fills that gap. Despite this 
fact, there are issues associated with the MPFM, such as the 
limited number of manufacturers, equipment pricing, and use 
of radioactive sources. Also considering the MPFM as a con-
ventional metering technology, it requires frequent calibration 
and maintenance, whereas having a model, calibration will 
not be an issue.

The MPFM measures flow rates in all phases, water cut, 
and GOR with considerable accuracy at a GOR of less than 
2,000 scf/stb. Figures 3 and 4 are a comparison between the 
conventional test separator and the MPFM readings for GOR 
and water cut, respectively9. Both GOR and water cut are fall-
ing within the acceptable error band of ±10%.

In contrast, wells with a GOR of greater than 2,000 scf/stb 
were tested using both a test separator and the MPFM. At a 

Reservoir Type GOR 
Black Oil < 2,000 
Volatile Oil 2,000 to 3,300 
Gas Condensate 3,300 to 50,000 

 
Table 1. Classification of reservoirs based on GOR 
 
 
 
 
 
 

 
 
Fig. 3. Comparison between the separator GOR and the MPFM GOR of less than 2,000 scf/stb. 
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Fig. 4. Comparison between the separator water cut and the MPFM water cut for a GOR of less than 
2,000 scf/stb. 
 
 

 
 
Fig. 5. Comparison between the separator’s GOR and the MPFM’s GOR when greater than or equal to 
2,000 scf/stb. 
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Fig. 6. Comparison between the separator’s water cut and the MPFM’s water cut for a GOR greater or 
equal to 2,000 scf/stb. 
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GOR >2,000 scf/stb, the deviation between the MPFM’s GOR 
and the test separator’s GOR was more than ±10% in terms of 
absolute error, Fig. 59. Nevertheless, this also impacts the water 
cut readings, where the MPFM is failing to measure the water 
cut accurately at a high GOR, Fig. 69. Therefore, a high GOR 
affects the rate measurement and water cut values, thereby con-
firming that there are no MPFMs certified for high GORs.

NEW METHODOLOGY

The following steps summarize the methodology in a nutshell.

1.	 Proposed steps estimate the water cut:

•	 Gather data for low and high GOR wells.

•	 Compare actual water cut with existing multiphase flow 
correlations.

•	 Develop the ANN model. 

•	 Select the most appropriate model that achieves the least 
errors, and cover the whole range of the GOR.

•	 Verify the optimized ANN model with a new set of 
data.

2.	 Data types required to estimate the water cut:

•	 The dynamic data that are based on real-time frequency.

•	 The upstream and downstream wellhead pressure or 
temperature.

•	 The inflow control valve pressure. 

•	 The downhole gauge’s pressure and temperature.

•	 The choke valve position.

3.	 Static data to model the inflow performance relationship 
and TPR curves:

•	 Pressure, volume, temperature.

•	 Reservoir data such as permeability, pressure, tempera-
ture, skin, etc.

•	 Wellhead samples.

RESULTS AND DISCUSSION 

There were 100 wells with a total of 1,210 data points 
included in this research representing 48 wells with a GOR 
of less than 2,000 scf/stb, and 52 wells with a GOR greater 
or equal to 2,000 scf/stb. Initially, data was collected for nine 
inputs. The random Forest technique was used to select the 
most important parameters with respect to water cut. After 
implementing the subject technique, the number of inputs 
were reduced to five: (1) upstream flowing wellhead pressure, 
(2) downstream flowing wellhead pressure, (3) GOR, (4) oil 

flow rate, and (5) downhole gauge pressure. The ANN model 
was then developed and optimized to get the most accurate 
and reasonable results. Table 2 shows the final optimized 
ANN model.

Figures 7 to 9 shows the training, testing, and overall 
results for the optimized ANN model, respectively.

Table 3 reflects the error analysis resulting from running 
the ANN model with five inputs. Overall error, Ear, is 8.13%, 
which is a less than acceptable error of 10%. Also, the abso-
lute error, Eaa, is less than 5%, which demonstrates the accu-
racy of the developed model with only five inputs. 

The ANN model equation can be written as:
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where w is noted for weights and b for biases.
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Fig. 7. Optimized ANN model; training results. 
 
 
 

 
 
Fig. 8. Optimized ANN model; testing results. 
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Fig. 8. Optimized ANN model; testing results. 
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CONCLUSIONS

1.	 “Threat to Validity,” models developed in this research are 
applicable to data ranges and boundaries.

2.	 A combination of real-time data and static data was used 
to accurately estimate water cut in high GOR wells.

3.	 The ANN technique proves its high accuracy for estimating 
water cut with a minimum error rate with a provided 
set of data, where it can be used as an alternative tool to 
estimate water cut when measurement devices, such as the 
separator, go down or require maintenance.

4.	 Also, the ANN model with nine inputs showed results 
with an average Ear% of 8.18% against an error attained 
of 8.13% when using the ANN model with five inputs. 
This makes no significant difference when using either 
five or nine inputs, as the selected five inputs are the most 
important variables from the Random Forest technique.

5.	 Moreover, the ANN model was also verified with another 
set of data and resulted in an error of 7.72%, which 
confirms the robustness of the model.
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ABSTRACT 

Challenges related to matrix acid stimulation and fluid place-
ment in extended reach horizontal wells are usually exagger-
ated, and demand a constant flow of innovation. The optimi-
zation of real-time fluid placement, increasing the reservoir 
contact and establishing uniform fluid distribution for better 
production/injection across the open hole interval, is one area 
that can benefit from these new innovations.

Coiled tubing (CT) equipped with a tractor and new real-
time downhole flow measurement capabilities was selected 
as the solution. While a CT tractor facilitates the reach, flow 
measurements provide a clearer understanding of downhole 
injectivity patterns. Real-time fluid direction and velocity 
are acquired and used to identify high/low intake zones. The 
data is subsequently applied to adjust the stimulation diver-
sion schedule accordingly. In a water injection well, baseline 
data was acquired before commencing a matrix stimulation 
treatment. The treatment was squeezed through the CT at the 
depths highlighted as low intake during the initial profiling.

The CT real-time flow tool was deployed during the matrix 
stimulation treatment of the extended reach water injection 
well with a downhole tractor. The flow tool measured the 
baseline injection profile, which was then correlated with the 
mobility data. Results from the pre-stimulation profile showed 
that 70% of the injection fluid was entering in a 3,000 ft sec-
tion near the toe (24,500 ft), whereas 30% of the injection 
fluid was spread across the remainder of the open hole inter-
val. The acquired flow data was able to identify sections of 
the wellbore featuring low mobility and viscous fluids, which 
in turn provided additional information for the adjustment of 
the subsequent stimulation pumping sequence. The real-time 
optimization of stimulation treatment helped to increase the 
post-stimulation injection rate by over four times the pre-stim-
ulation rate.

The combination of the CT tractor with a real-time flow 
measurement tool provides an efficient means to stimulate 
extended reach water injector wells. The basic technology 
behind the real-time flow tool is a synchronized system with a 
series of heating elements and temperature sensors along the 
tool to determine the direction and mean velocity of the fluid. 
This ultimately allows for a more accurate placement of the 

stimulation treatment to the targeted zones. The technology 
can also be applied for extended reach oil producers, how-
ever, for optimum tool performance, the well should first be 
displaced with an inert fluid.

BACKGROUND

The challenges associated with matrix acid stimulations in 
extended reach horizontal wells are formidable and extensive, 
and of those challenges, reaching total depth (TD) and the 
accurate placement of the stimulation fluids are two of the 
major ones. To overcome these challenges, a downhole coil 
tubing (CT) tractor is run in combination with a real-time 
flow tool. CT under its own “steam” can only go so far along 
a long horizontal wellbore before it eventually locks up under 
the effects of weight stacking, frictional forces, and helical 
buckling1. At that point, the CT tractor is activated to pull the 
coil to TD. 

The 4.7” diameter CT tractor is capable of pulling up to 
14,500 lb, has full flow through capability and is placed at the 
top of the string. The tractor is hydraulically powered from the 
surface by pumping a predetermined rate of fluid to activate 
the tractor, engaging the arms to pull the CT to the desired 
depth. One of the goals to simplify a complex reservoir is to 
obtain an evenly distributed water injection profile along the 
open hole section of the injector wells. The real-time flow tool 
solves this part of the equation, delivering accurate fluid place-
ment to where it is most desired, and also allows for a rapid 
and effective evaluation of the matrix acid treatment. The real-
time flow tool is connected by fiber optic cable to the surface 
through the CT reel, and all measurements are available via 
the data telemetry interfaces. 

INTRODUCTION

Blikra et al. (1994)2 defined extended reach wells on the basis 
of measured depth to the true vertical depth (MD:TVD) ratio, 
and according to the definitions, extended reach wells have 
a MD:TVD ratio greater than 2.0. In barefoot injectors and 
producer completions, even relatively shallow drilling induced 
near wellbore damage can substantially impede the flow or 
injectivity3. Therefore, matrix acid stimulation was required to 

Introduction of Real-Time Flow 
Measurements Opens New Paths to 
Overcome Challenges Encountered during  
the Acid Stimulation of Extended Reach Wells
Laurie S. Duthie, Hussain A. Al-Saiood, Hamad M. Almarri, and Danish Ahmed
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remove and bypass drilling induced reservoir damage from the 
overbalanced water-based mud, which uses calcium carbon-
ate as a weighting material4. The option to bullhead the acid 
treatment from the surface or from a CT early lock up depth 
are not considered viable alternatives as this could result in a 
loss of control of the fluid placement. 

The treatment fluids under this scenario will always find 
and take the path of least resistance to the highly permeable 
and non-damaged zones. Of course, these zones may not 
require treatment, and worse still, end up bypassing the zones 
with the greatest need of the treatment5. This could lead to the 
unfortunate outcome of the acid stimulation doing more harm 
than good, helping to create channels that could lead to early 
water breakthrough in nearby oil producer wells. 

Therefore, the importance of covering the entire wellbore 
of the extended reach wells cannot be emphasized enough; 
leaving potentially large sections of the open hole in a nonpro-
ductive state will certainly lead to a poor outcome. To further 
stress this point; the whole reason for drilling extended reach 
wells — increased reservoir contact, reduced footprint, and 
less wells drilled — will be eliminated by a poorly executed 
stimulation job6. 

The open hole formation and extended reach well com-
pletions are serious impediments that must be overcome to 
successfully reach TD, including the effective delivery of stim-
ulation fluids to the target zones. The intent of the authors is 
to demonstrate how the effective use of available technologies 
can be applied in these demanding environments to ensure 
optimized placement of needed stimulation fluids.

WELL INFORMATION

The candidate well was drilled as an extended reach power 
water injector, consisting of a 7,586 ft open hole toe up sec-
tion. Figure 1 shows the candidate well’s wellbore geometry.

The well is completed with a 7” tubing, and a 3D plot in 
Fig. 2 illustrates the well profile in terms of azimuth, trajec-
tory, and inclination of the wellbore.

JOB OBJECTIVES

The main job objective was to remove formation damage and 
achieve full stimulation coverage of the entire open hole sec-
tion. The injection rate was well below the target rate and was 

selected for a matrix acid stimulation to improve well injec-
tivity. During the job’s design phase, reach simulations of the 
CT were conducted, and it was determined that a tractor was 
required to ensure full coverage of the well to TD. 

In addition, for an effective stimulation treatment, it is 
highly beneficial to obtain the pre-stimulation injection profile 
with identification of the tight and/or damaged, and high per-
meable zones. 

CHALLENGES

The main challenges to reach TD were:  

•	 A high hydrogen sulfide (H2S) environment 

•	 Uneven borehole

•	 Viscous fluids

•	 High load (+24,500 ft of 2” pipe)

•	 Open hole of +7,500 ft

•	 High risk of becoming stuck, due to differential pressure

•	 Understanding injectivity patterns

 
 

 
 
Fig. 1. The wellbore geometry of the candidate well. 
 
 
 
 

 
 
Fig. 2. A 3D well profile of the candidate well, showing the azimuth, trajectory, and inclination of the 
wellbore. 
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Fig. 1. The wellbore geometry of the candidate well.
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Fig. 2. A 3D well profile of the candidate well, showing the azimuth, trajectory, and inclination of the 
wellbore. 
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Fig. 2. A 3D well profile of the candidate well, showing the azimuth, trajectory, 
and inclination of the wellbore.
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The first five challenges can be overcome by selecting 
a tractor that can not only survive in this tough environ-
ment, but has been designed to deliver the high pulling force 
required to reach the well’s TD. Another consideration and a 
significant risk, especially for extended reach open hole sec-
tions, was that keeping the CT stationary for lengthy periods 
can lead to a situation where the CT is stuck due to differen-
tial pressure. 

Distributed temperature sensing (DTS) has been extensively 
utilized successfully for the optimization and evaluation of 
stimulation treatments and can provide quantitative analysis 
and injection profiling. An integral part of DTS operations 
necessitates lengthy periods of stationary CT to monitor the 
temperature response along the hole, and is in direct conflict 
with measures in place to avoid becoming stuck in the hole. 
DTS dependency to determine injection profiling is based on 
the technique of cooler fluid injection and formation warm-
back. This poses a challenge if there is cross flow during DTS 
warmback, as the DTS data cannot be utilized for interpreta-
tion. With these DTS limitations, the CT real-time flow tool 
was better suited to deliver the real-time flow data to better 
understand the injectivity patterns.

CT 4.7” TRACTOR DESCRIPTION

As shown in Fig. 3, the 4.7” CT tractor is the largest down-
hole CT tractor available, and is considered to be the pulling 
powerhouse of CT tractors. The 4.7” CT tractor can deliver 
up to 14,500 lb of pulling capacity and is the preferred choice 

for extended reach well water injectors. 

CT 4.7” TRACTOR DESIGN FEATURES 

Several key design features are incorporated in the 4.7” CT 

tractor:

•	 The tractor has full flow through capability, and the abil-

ity to connect tools below the surface via an electric line 

or fiber optic connection; the tractor can be isolated if 

required by dropping a ball down the CT. 

•	 The tractor is controlled and driven 100% by hydrau-

lic fluids, making it an ideal tool for CT operations in 

lengthy duration jobs.

•	 The arms, or “grippers,” exert a positive force on the 

cased or open hole wellbore with constant traction and 

can work in a hole size in the range from 5.2” to 8½”.

•	 This allows traversing along an uneven borehole, through 

viscous fluids with extremely high loads.

•	 The components are extremely tough, resistant to acids, 

H2S, and are designed to cope with the harshest of down-

hole conditions. 

Tractor Operation:

•	 The tractor consists of two gripper assemblies, with one 

assembly at either end of the tool, Fig. 4. The control unit 

 
 
Fig. 3. An image of the 4.7” CT tractor. 
 
 
 

 
 
Fig. 4. CT tractor components. 
 
 

 

 
 
Fig. 5. Illustration of how an inchworm moves. 
 

Fig. 3. An image of the 4.7” CT tractor.
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diverts pumped fluids from the surface in a synchronized 
movement. The tractor can be started by increasing the 
pump rate until it exceeds the pre-set pressure.

•	 The fluid is diverted to the front gripping assembly, which 
expands and engages with the formation wall, where once 
engaged, a piston is activated to drive the tractor forward 
and pull the CT behind it.

•	 This is then repeated with the rear gripping assembly en-
gaging, and then the front gripping assembly is released 
and pushes the tractor forward again. 

•	 This repeated motion is similar to how an inchworm 
moves, Fig. 5. The tractor speed is regulated by the avail-
able differential pressure across the tool and the rate of 
the CT being fed through the injector head. A speed of 
around 15 ft/min across the horizontal section is typical.

•	 Once the desired depth has been reached, the tractor can 

be stopped by simply reducing the pump rate to below 
the activation threshold. 

•	 Fluid treatment can then be pumped into the formation 
while pulling out of the hole.

•	 To restart the tractor, the pump rate needs to be in-
creased to above the predetermined set point.

CT REAL-TIME FLOW TOOL DESCRIPTION

The CT real-time flow tool, Fig. 6, provides CT measurements 
of downhole flow velocity and fluid direction during the matrix 
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Fig. 6. The CT real-time flow tool. 
 
 
 
 
 
 

 
 
Fig. 7. The CT real-time flow tool nozzle and sensor locations. 
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Fig. 6. The CT real-time flow tool.
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acidizing operation along with pressure, inside the coil and out-
side, i.e., in the annulus, temperature, T, casing collar locator 
(CCL), and gamma ray. Data is transmitted to the surface via 
a continuous fiber optic cable placed inside the CT reel. The 
tool sensors are used to calculate the mean fluid velocity in the 
annulus between the CT reel and the wellbore, providing real-
time data of the fluid distribution and direction of flow.

The fluid pumped from the surface down the CT exits via 
the CT real-time flow tool through nozzles situated between 
the upper and the lower parts, Fig. 7a. The upper and lower 
sections are made up of four sets of sensors: A, B, C, and D. 
Each set of sensors have three temperature probes, and all of 
the sensors are located far enough away to avoid the effects of 
fluid jetting. The sensor sections, Fig. 7b, have an up, middle, 
and down temperature probe, and all of these temperature 
probes have dual modes, which can act as either a heater or 
temperature sensor. As depicted in Fig. 7c, a typical configu-
ration has the middle probe in heater mode at a constant tem-
perature, and the up and down 
probes as temperature sensors 
measuring the ambient tempera-
ture. This type of configuration 
allows the direction of the flow 
to be detected7. 

In the case of upward flow 
being detected, Fig. 8a, the mid-
dle probe is heated, creating a 
thin layer of warmer fluid close 
to the tool, and the warmer fluid 
disperses in the direction of the 

flow. The upper temperature probe now measures this warmer 
fluid, whereas the lower temperature probe continues to mea-
sure the ambient fluid temperature, therefore, the direction 
of flow is easily detected. To confirm the fluid direction, the 
temperature difference between the ambient probes Tup - Tdwn 
will result in a positive number, while a negative number will 
indicate the direction of flow as down, Fig. 8b7. 

FLUID VELOCITY CALCULATION 

Fluid velocity is calculated based on the fluid thermodynamic 
properties using the relationship between the amounts of 
power dissipated to give a unit of temperature difference. The 
power, P, is used to heat the middle probe and is dissipated 
in the fluid, whereas the fluid velocity, ν, is a function of the 
dissipated power: ν = f (P/DT). Where, the amount of the dis-
sipated power per 1° of the temperature excursion in the fluid, 
P/DT, depends on the fluid velocity. To calculate the fluid 
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Fig. 7. The CT real-time flow tool nozzle and sensor locations. 
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Fig. 8. The upward flow sensor (a), and the downward flow sensor (b). 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 9. Results of a pre-job injectivity test with water. 
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velocity, a calibration of the tool is necessary to refine the rela-
tionship to actual conditions. 

Although a lab-based empirical calibration for the down-
hole tool is possible, a more accurate calibration is obtained 
in situ under actual fluid and well conditions. To conduct the 
calibration under live conditions, the tool is normally stationed 
in a non-flow zone such as the casing so that 100% of the 
pumped fluids will go in one direction. The fluid is pumped 
at different pre-selected rates and the power dissipation is 
recorded as a function of the fluid velocity in the CT/casing 
annulus7.

INTERVENTION WORKFLOW

An intervention workflow combining the CT real-time flow 
tool measurement and tractor was defined as outlined here:

Step 1. Performing a pre-job injectivity test:

•	 Perform an injectivity test before the CT is run in hole 
(RIH).

Step 2. CT real-time bottom-hole flow parameters tool cali-
bration (Run-1):

•	 With the well in shut-in condition, RIH with CT without 
pumping fluid through the CT.

•	 Calibrate the CT real-time flow tool by RIH and pulling 
out of hole (POOH) at different CT speeds within the 7” 
liner.

•	 Calibrate the CT real-time flow tool by pumping water 
through the annulus of the CT and completion. Keep the 
CT stationary, but increase the pumping rates. 

•	 Conduct the depth correlation utilizing CCL measurements.

Step 3. Pre-stimulation CT real-time flow tool injection profile 
(Run-1):

•	 RIH the CT to TD, and start the seawater injection down 
the CT’s annulus.

•	 While bullheading water from the annulus of the CT, and 
the completion at 4.0 bbl/min, POOH to the liner shoe of 
the CT while recording the CT real-time flow tool.

•	 Perform CT real-time flow measurement tool stationary 
measurements (while bullheading water from the annu-
lus of the CT and completion), stop for logging stations 
while recording with the CT real-time flow tool.

Step 4. Stimulation treatment (Run-2):

•	 Pump stimulation as per interpretation of the CT real- 
time flow tool.

Step 5. Post-stimulation evaluation (Run-3):

•	 Perform CT RIH for post-stimulation injection profiling 
with the CT real-time flow measurement tool.

•	 Perform the CT real-time flow measurement tool calibra-
tion as necessary.

Step 6. Performing post-job injectivity test:

•	 Perform an injectivity test after the stimulation treatment.

EXECUTION

Step 1. Performing pre-job injectivity test:

Before the first CT is RIH, 30 bbl of organic solvent was 
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Fig. 9. Results of a pre-job injectivity test with water. 
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Fig. 9. Results of a pre-job injectivity test with water.
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Fig. 10. Results of a CT real-time flow tool calibration at depth while pumping from the annulus of the CT 
at different rates. 
 
 

 
 
Fig. 11. The CT parameters during tractoring, Run-1. 
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Fig. 10. Results of a CT real-time flow tool calibration at depth while pumping from the annulus of the CT at different rates.
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bullheaded, followed by the pumping of 180 bbl of freshwater 
mixed with 20 bbl of a mutual solvent. After the complete well-
bore displacement, an injectivity test with water was performed, 
where a total of 1,345 bbl of water was injected, Fig. 9.

Step 2. CT real-time bottom-hole flow parameters tool cali-
bration (Run-1):

The CT was RIH with the CT real-time flow tool and tractor 
and consisted of the following steps:

•	 The CT was RIH and stopped 500 ft above the casing shoe.

•	 Performed a CT real-time flow tool calibration at depth 
by pumping through the annulus of the CT and comple-
tion at different rates, Fig. 10. 

•	 After performing the calibration, continue to RIH and 
perform depth correlation at the 
casing shoe, before entering the open 
hole.

Figure 10 shows the CT real-time flow 
tool velocity measurement during the cal-
ibration process. The tool was stationed 
inside the 7” liner during calibration. The 
black curve in the first track represents 
the surface injection rate and the blue 
and green curves represent the downhole 
fluid velocity measurements from the 
upper and lower CT real-time flow tool, 
respectively. A step increase in the down-
hole velocity perfectly coincides with the 
change in surface injection rate, validating 
the tool’s measurement.  

Step 3. Pre-stimulation CT real-time flow 
tool injection profile (Run-1):

After correlation, the CT was RIH until 
it reached its maximum depth where 
it locked up very suddenly — weight 
reduction. At this point, the tractor was 
activated and started to RIH to the target 
depth. The CT reached to 24,500 ft (100 
ft before TD), Fig. 11.

With the CT at 24,500 ft, a pull test 
was conducted to confirm the pipe was 
free and could maintain a stable POOH 
weight. Annulus injection profiling took 
place at 4 barrels per minute (bpm). The 
CT real-time flow tool injection profiling 
was recorded at 200 ft intervals from 
24,382 ft to 20,382 ft. After this, the 
CT flow measurement tool sensors were 

showing unclear readings, likely due to organic deposits cov-
ering the sensors. To clear the sensors, 20 bbl of water was 
pumped through the CT. Afterwards, the CT flow measure-
ment tool sensors then began to show positive readings.

Injection profiling continued from 20,382 ft to 19,160 
ft, and again the CT flow measurement tool sensors started 
to show unclear readings. An attempt to clean sensors by 
pumping 100 bbl of water through the CT was not effec-
tive. The next step was to mix and spot 50 bbl of organic 
solvent around the end of the CT to clean up the sensors. 
After organic solvent came out from the nozzle, the CT flow 
measurement tool sensors again began to show positive read-
ings. Annulus injection profiling continued from 18,280 ft to 
17,008 ft to complete the open hole profile.

Figure 12 shows the CT real-time flow tool injection pro-
file; the injection profile (blue shaded area) is shown in the 
fourth track from the left. The profile is based on station 

 
 
 

 
Fig. 12. The CT real-time flow tool injection profile. 
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Fig. 12. The CT real-time flow tool injection profile.
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measurements. The red curve in the third track from the left is 
the absolute downhole velocity measured by the CT real-time 
flow tool, while the black dots in the same track represent 
the velocity during stationary stops. The CT real-time flow 
tool velocity profile is obvious from the toe and shows a clear 
increasing trend. Subsequently, velocity measurements above 
the green arrow are affected by downhole conditions; i.e., 
the presence of an unknown fluid or heavy material, like tar. 
Therefore, the injection profile above the green arrow is a lin-
ear interpolation between the velocity measured at the green 
arrow, and the velocity inside the 7” liner. Based on the calcu-
lation, the open hole interval above the green arrow is taking 
about 32% of the total injection.

Step 4. Stimulation treatment (Run-2):

The CT was POOH to the surface after the completion of 
injection profiling through the CT real-time flow tool. The 
stimulation treatment was optimized based on the CT real-
time flow tool injection profiling results, and was pumped 
during the CT’s Run-2, Fig. 13. 

•	 RIH to casing shoes at 17,038 ft.

•	 Start tractoring from the case hole to open hole and stop 
at 24,500 ft.

•	 Start mixing fluid as per the program.

•	 Pump the treatment as per the optimized schedule.
 

 
 
Fig. 13. The CT parameters during Run-2.  
 
 
 
 
 
 
 
 

 
 
Fig. 14. Injection test after stimulation.  
 
 
 
 
 

Time (hh/mm/ss) 

C
T W

eight (lbf) C
or

r 
D

ep
th

 (f
t) 

Time (hh/mm/ss) 

Pr
es

su
re

 (p
si

) 

Total Pum
p R

ate (bbl/m
in) 

Fig. 13. The CT parameters during Run-2.
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Step 5. Post-stimulation evaluation (Run-3) and Step 6: 
Performing post-job injectivity test:

Following the second CT run, the CT was POOH to the sur-
face for Run-3 to achieve the post-stimulation injection profil-
ing through the CT real-time flow tool. After multiple trials, 
the CT was only able to reach 19,650 ft; however, an injectiv-
ity test was conducted after the stimulation treatment to eval-
uate the effectiveness, where the injection rate was increased 
to 7.50 bpm, and the maximum wellhead pressure reached 
only 650 psi, Fig. 14. Compared to the pre-stimulation, the 
injection rate was four times higher — 8.0 bpm compared to 
2.0 bpm — with a similar wellhead pressure ~500 psi.

SUMMARY

1.	 The CT real-time flow tool data displayed a good 
correlation with downhole data showing the presence of 
heavy fluids, therefore proving the CT real-time flow tool 
measurements are reliable and can be used in cases where 
no other data is available.

2.	 The CT real-time flow tool calibration in the cased hole 
section, pumping from the annulus and conducting CT 
real-time flow tool pre-stimulation profiling while the CT is 
POOH, and the CT stations in the open hole section were 
completed successfully.

3.	 The CT real-time flow tool profiling results showed that 
most of the injection, i.e., approximately 68% of the 
injection is entering from 21,600 ft to TD. The remaining 
injection (32%) is spread from the heel section to 21,600 
ft.

4.	 During the CT real-time flow tool profiling and the CT 
real-time flow tool stationary measurements from the heel 
to 21,000 ft, it was observed that the CT real-time flow 
tool sensors were contaminated by unknown fluids in 
the deepest section of the wellbore. Subsequently, more 
stationary measurements helped in acquiring a complete 
injection profile, therefore, the injection profile above 
21,600 ft is a linear interpolation between the measured 
CT real-time flow tool velocity at 21,600 ft and the total 
velocity inside the 7” casing.

5.	 The CT real-time flow tool pre-stimulation profiling results 
were applied to optimize the pumping schedule.

6.	 During the third CT real-time flow tool run for post- 
stimulation profiling, CT lockup occurred at 19,600 
ft during RIH; several attempts to free the CT were 
conducted without success. Therefore, CT real-time flow 
tool data for post-stimulation profiling could not be 
recorded, as an adequate amount of open hole was not 
able to be reached.

CONCLUSIONS

The combination of state-of-the-art integrated technologies to 
access the entire length of the 24,500 ft wellbore and achieve 
accurate and optimized fluid placement are critically import-
ant factors in delivering a well-managed reservoir. The robust 
design of the tools is also a key factor in the successful deploy-
ment. The tools are manufactured to withstand large compres-
sive and tensile loads, high resistance to H2S, and corrosive 
fluids such as acid. 

The world’s first intervention of this type, running the CT 
real-time flow tool together with a CT tractor, has shown 
promising results. This allowed for an accurate and efficient 
fluid treatment placement with downhole flow monitoring 
data in real-time to quickly evaluate the treatment effective-
ness. This, in turn, led to the main job objectives being met 
with a 400% improvement in well injectivity achieved.
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ABSTRACT 

Coarse resolution digital images do not reveal the pore-scale 
features of rock. Instead, they offer a large field of view 
(FOV), enabling a better representation of the textural het-
erogeneity of rock at the plug scale. Here we present a digital 
rock physics (DRP) workflow to estimate the porosity, perme-
ability, and electrical resistivity from such 3D images of sand-
stone and carbonate plugs. These samples were imaged at two 
energy levels providing the volumes of the bulk density, ρb, 
and photoelectric factor, Pf, respectively. The latter was con-
verted into the mineralogy volumes that, in turn, gave us the 
mineral matrix (or grain) density, ρg, volumes. These volumes, 
combined with ρb, gave us the total porosity, ϕ, volumes from 
the mass-balance equation.

Next, we used the Kozeny-Carman permeability-porosity 
equation to arrive at the elemental absolute permeability, k, at 
each voxel. In the same fashion, Archie’s equation was used to 
obtain an elemental electrical formation factor, F, distribution 
inside each plug. The effective k and F of the entire plug were 
then computed using the respective computational modules of 
the multiphysics package COMSOL.

These DRP results were validated by physical data. The 
computed effective ρb, ρg, and ϕ appeared to closely match the 
laboratory values, as did the formation factor. Quantifying 
the permeability proved to be more problematic since k not 
only depends on ϕ, but also on the grain size, which cannot 
be directly determined from the coarse resolution images. Still, 
by selecting a plausible grain size value, we achieved a match 
between the computed and measured permeability, although 
not as robust as for the electrical formation factor.

This workflow is an example of the dual energy X-ray com-
puted tomography (CT) applications in estimating the basic 
petrophysical properties of sandstone and carbonate rocks. An 
extension of this methodology will be a combination of coarse 
resolution imaging with selected pore-scale microtomographic 
images used to determine the permeability-porosity and for-
mation factor-porosity relations, which can consequently be 
used in each coarse element to compute the effective k and F. 

INTRODUCTION

Computing Directional Effective Transport Properties

The original idea of digital rock physics (DRP) “image and 
compute,” is to produce the pore-scale 3D images of rock 
fragments and then simulate a desired physical process in such 
a digital object: fluid flow to obtain permeability, electrical 
current flow to obtain resistivity, and stress field to obtain the 
elastic moduli1. To accomplish this objective, high resolution 
images of rocks are required to resolve the fine details of the 
pore structure and simulate such processes. The drawback of 
this approach is that the field of view (FOV) is compromised 
— the finer the resolution, the smaller FOV. This is a disad-
vantage, since often strong heterogeneity of natural rock can-
not be captured within a small FOV. To overcome this chal-
lenge, we need to develop a method to estimate the physical 
properties of rocks on relatively large samples where the res-
olution is coarser than the pore scale, and therefore, the pore 
structure is not adequately resolved2.

To address this challenge, we produced dual energy 3D 
images of inch-sized carbonate and sandstone samples. Need-
less to say, the pores were not resolved for this large FOV. 
These computed tomography (CT) scan images were trans-
formed into 3D volumes of the bulk density, ρb, and photo-
electric factor, Pf. The Pf volumes were used to obtain the vol-
ume fractions of the minerals in each voxel and then compute 
their grain density, ρg. Next, ρb and ρg were used to compute 
the total porosity, ϕ, for each voxel from the mass-balance 
equation2. The electrical conductivity, σ, and absolute per-
meability, k, in each voxel were assumed to be related to 
ϕ according to the Archie and Kozeny-Carman equations, 
respectively3. Finally, a Darcy-type solver was used to com-
pute the effective electrical conductivity, σeff, and absolute 
permeability, keff, of each 3D volume. The effective electrical 
formation factor, Feff, was obtained from σeff and the conduc-
tivity of the brine.

These computational results were compared to the labo-
ratory measurements. The densities, ρb and ρg, and ϕ from 
DRP, matched the laboratory results. The Feff match was 
also satisfactory. To match the DRP’s effective keff to the 
laboratory data, we had to adjust the grain size used in the 
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Kozeny-Carman equation. A single average grain size, dg, was 
used for all carbonate samples, and a different dg was used 
for all sandstone samples. Except for some of the samples, the 
keff match between the DRP and laboratory appeared to be 
adequate as well. To address the uncertainty in the grain size, 
scanning electron microscope (SEM) images were obtained for 
five samples. Using these results helped us somewhat improve 
the DRP laboratory match. The new methodology intro-
duced here opens a way of utilizing coarse resolution CT scan 
images of plugs and even cores to estimate the transport prop-
erties of large heterogeneous samples.

Electrical Conductivity and Permeability Anisotropy

To analyze the σ and k anisotropy, we assumed that the lab-
oratory measurements of the parallel to bedding core plugs 
represented the simulation results in the X and/or Y direc-
tions, while the measurements of the normal to bedding core 
plugs corresponded to the simulation results in the Z direc-
tion. After numerically simulating the directional σeff and k in 
all three directions for each sample, we found that all samples 
were approximately isotropic. These results were confirmed by 
the laboratory data.

SAMPLE DESCRIPTION

There is a total of four core plug pairs — three carbonate pairs 
#1 to #3, and one sandstone pair #4. In addition, we used 
one sandstone core plug cut normal to the bedding. Its paral-
lel-to-the-bedding pair was damaged and could not be used. 

A core description, as well as a thin section description, 
were obtained for all carbonate and sandstone samples. 

Core Description

The carbonate samples are light gray, composed of approx-
imately 80% calcite and 20% dolomite, cryptocrystalline to 
fine crystalline with no visible porosity. The sandstone sam-
ples are dark brown, composed of approximately 90% quartz 
and 10% clay, moderately consolidated, argillaceous, non-cal-
careous, fine- to medium-grained with noticeable porosity.

Thin Section Description

The carbonate samples are composed of two main lithologies: 
dolomitized rock, and micritized lime mudstone. The dolo-
mitized rock is cross-lined with a dark muddy matrix. It also 
contains micritized oolites, aggregate grains (mostly oolites) 
and fresh unmicritized grains, including paleopods. The micri-
tized lime mudstone is very heterogeneous mixed with bur-
rowed mudstone. No visible porosity is apparent in the car-
bonate thin sections, perhaps due to very small pore size.

The sandstone samples are composed of a heterogeneous 
siliciclastic unit with two main interlayered and intermixed 

lithologies: fine-grained sandstone and layers of muddy sand-
stone. The fine-grained sandstone is well sorted with high vis-
ible porosity. At the same time, some pores are mud clogged 
and appear to have patchy distributions in the samples exam-
ined. The layered muddy sandstone is composed of approx-
imately 50% organic rich mudstone and 50% siltstone. The 
sandstone sample’s thin sections show fairly large chunks of 
bitumen and charcoal — woody material. 

 
 

                        
 
Fig. 1. On the left is a core plug image as received, and on the right is the extracted block. 
 
 
 
 
 

 
 
Fig. 2. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 1 parallel to the bedding 
carbonate sample. 
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Fig. 1. On the left is a core plug image as received, and on the right is the 
extracted block.
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Fig. 2. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 1 parallel to the bedding 
carbonate sample. 
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Fig. 2. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 1 parallel to the 
bedding carbonate sample.

 
 
Fig. 3. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 1 normal to the bedding 
carbonate sample. 
 
 
 
 
 

 
 
Fig. 4. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 2 parallel to the bedding 
carbonate sample. 
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Fig. 3. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 1 normal to the 
bedding carbonate sample.
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Fig. 4. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 2 parallel to the bedding 
carbonate sample. 
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Fig. 4. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 2 parallel to the 
bedding carbonate sample.
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DRP WORKFLOW

Our computational workflow includes two steps: (1) estimat-
ing rock properties, namely mineralogy, density, porosity, 
permeability, and electrical conductivity at each voxel, and (2) 
using the respective elemental volumes as input for numerical 

simulations to obtain the directional effective transport 
properties2. 

Computing Rock Properties at each Voxel

Dual Energy 3D ρb and Pf Raw Data. The raw images contain 
the cylindrical core plugs encased in sleeves. Our first step was 
to extract a rectangular block from these images, Fig. 1. 

Figures 2 to 10 show the histograms of the ρb and the Pf for 
each rectangular block.

Scalar Rock Properties: Mineralogy, ρg, and ϕ. The Pf 3D vol-
umes were used to determine the mineralogy of our samples, 
and then the ρg and porosity. The Pf volumes give informa-
tion about mineral mass fractions at each voxel 
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. In the carbonate samples, we assumed 
the rocks are composed of calcite and dolomite. The volume 
fraction of calcite was computed at each voxel using Eqns. 1 
and 2, with the individual mineral Pf values listed in Table 14.
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Determining the mineralogy of the sandstone samples was 

 
 
Fig. 5. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 2 normal to bedding the 
carbonate sample. 
 
 
 
 
 
 

 
 
Fig. 6. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 3 parallel to the bedding 
carbonate sample. 
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Fig. 5. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 2 normal to 
bedding the carbonate sample.
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Fig. 6. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 3 parallel to the bedding 
carbonate sample. 
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Fig. 6. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 3 parallel to the 
bedding carbonate sample.

 
 
Fig. 7. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 3 normal to the bedding 
carbonate sample. 
 
 
 
 
 

 
 
Fig. 8. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 4 parallel to the bedding 
sandstone sample. 
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Fig. 7. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 3 normal to the 
bedding carbonate sample.
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Fig. 8. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 4 parallel to the bedding 
sandstone sample. 
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Fig. 8. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 4 parallel to the 
bedding sandstone sample.

 
 
Fig. 9. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 4 normal to the bedding 
sandstone sample. 
 
 
 
 
 

 
 
Fig. 10. The ρb (g/cc) and Pf (barns/electron) distributions of a normal to the bedding 
sandstone sample whose pair was damaged. 
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Fig. 9. The ρb (g/cc) and Pf (barns/electron) distributions of Pair 4 normal to the 
bedding sandstone sample.
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Fig. 10. The ρb (g/cc) and Pf (barns/electron) distributions of a normal to the bedding 
sandstone sample whose pair was damaged. 
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Fig. 10. The ρb (g/cc) and Pf (barns/electron) distributions of a normal to the 
bedding sandstone sample whose pair was damaged.
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more challenging because sandstones are rarely composed of 
pure quartz and often found mixed with various clay minerals 
and shale. Therefore, to address this uncertainty in the min-
eralogy of sandstone and to test the flexibility of our method, 
we chose two scenarios: (1) to partition the composition into 
pure quartz and “dirty” sandstone, and (2) to partition it into 
pure quartz and illite. Then, similar to the carbonate samples, 
we computed the volume fractions for both scenarios at each 
voxel, using Eqns. 3 to 6 with the Pf values listed in Table 1.  
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Figure 11 shows the ρb vs. Pf cross-plots, indicating that 
some of the local Pf values fall outside the pure mineral 
bounds. The same is true for ρb, where some of the values 
exceeded 3 g/cc or even fell below zero. The histograms previ-
ously shown in Figs. 2 to 10 indicate that the number of such 
outliers is quite small and may be related to some artifacts in 
image acquisition. Based on these facts, our strategy of dealing 
with the outliers was as follows. If a local Pf value fell outside 
the pure mineral bounds, the value assigned to the voxel was 
that of the closest pure mineral Pf . For the ρb, any voxel with 
the ρb larger than ρg was assigned ρb = ρg. The voxels with 
negative ρb values were assumed to have zero density (100% 
porosity).

The ρg was computed next using the mineral’s densities and 
volume fractions at each voxel via Eqns. 7 to 9 using the val-
ues listed in Table 1. 

Mineral ρb (g/cc) Pf (barns/electron)

Calcite 2.71 5.08

Dolomite 2.87 3.14

Quartz 2.65 1.81

Dirty Sandstone 2.39 2.7

Illite 2.52 3.45

Table 1. The mineral’s densities used to calculate the ρg and the Pf of the samples12

Fig. 11. The ρb (g/cc) vs. the Pf (barns/electron) cross-plot is shown for one sample of each lithology. The carbonate (left) and sandstone (right) samples show different 
patterns, which indicates differences in mineralogy and organic matter content. Data points that fall outside the mineralogy limits is assumed to be 100% composed of the 
mineral closest to it. The histograms in Figs. 2 to 10 show that the number of such outliers is statistically insignificant.
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The ϕ was then calculated at each voxel using the local ρb 

and the ρg, using Eqn. 10, which assumes that the pores are 

empty.
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Transport Properties: Formation Factor and Permeability. We 

computed the formation factor using Archie’s equation (Eqn. 

11) with the same cementation exponent, m = 2, and tortuos-

ity, a = 1, for all carbonate and sandstone samples.
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Then, we related the electrical resistivity to the formation 

factor using Eqn. 12 with the same water resistivity as used in 

the laboratory measurements. Since the numerical simulation 

model requires 3D σ as input files, we calculated the σ as the 

inverse of resistivity at each voxel.
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The Kozeny-Carman relation (Eqn. 13) was used to deter-

mine permeability in millidarcies (mD) using tortuosity, τ = 

2.5, and average grain sizes, dcarbonate = 4.4 μm and dsandstone = 

2.6 μm, for carbonate and sandstone, respectively.
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Numerical Simulations

To obtain the effective properties of the samples we used 
COMSOL. The required input files of local (elemental) σ, and 
permeability data, were used in the numerical simulations to 
compute the effective transport properties of the samples in 
the three directions, Fig. 12. COMSOL’s electrical current and 
Darcy moduli were used to determine the conductivity and 
permeability, respectively, using a voltage difference of 1 V 
and a pressure difference of 1 Pa on the facies of the desired 
direction, while a no-current and no-flow boundary condi-
tion was applied to the other facies. Only the results in the 
Z direction were compared to the laboratory measurements, 
while for the results obtained in the X and Y directions, X 
and Y were used for the anisotropy assessment.

The output of the COMSOL electrical current module 
is the current flux, J (Amperes), which was then used with 
Ohm’s law (Eqn. 14), to compute σ. The only needed input 
file for this modulus is σ (S/m). The formation factor is then 
calculated from Eqn. 15. 
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Fig. 12. Input files required for numerical simulations: (a) shows the 3D porosity profile, (b) 
shows the computed 3D permeability (mD), and (c) shows the 3D electrical conductivity 
(S/m).  
 
 

 
 
Fig. 13. SEM images of five normal to bedding samples: (a) Pair 1-⊥, (b) Pair 2-⊥, (c) Pair 3-
⊥, (d) Pair 4-⊥, and (e) Pair 5-⊥. 
 
 

 
Sample 

Specific 
Surface Area 

(1/mm) 

Average Grain 
Size (mm) 

Porosity 
(fraction) 

Permeability 
(mD) 

Pair 1-⊥ 0.0308 0.0052 0.0761 0.0308 
Pair 2-⊥ 0.0193 0.0045 0.0722 0.0193 
Pair 3-⊥ 0.2081 0.0045 0.1504 0.2081 
Pair 4-⊥ 0.1068 0.0026 0.1707 0.1068 
Pair 5-⊥ 0.7832 0.0075 0.1641 0.7832 

 
Table 2. The minerals’ densities used to calculate the ρg of the five pairs of samples12 
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Fig. 12. Input files required for numerical simulations: (a) shows the 3D porosity profile, (b) shows the computed 3D permeability (mD), and (c) shows the 3D electrical 
conductivity (S/m).
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Fig. 13. SEM images of five normal to bedding samples: (a) Pair 1- , (b) Pair 2- , 
(c) Pair 3- , (d) Pair 4- , and (e) Pair 5- .
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where V is the electrical potential and A is the cross-sectional 
area of the sample.
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Similarly, COMSOL’s Darcy flow simulator’s output is the 
fluid flux, Q (m3/s). Darcy’s law (Eqn. 16) was then used to 
calculate the permeability in mD:
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where p is the pore pressure and A is the cross-sectional area.

2D SEM IMAGES

2D SEM images were used to estimate the dg in millimeters 
using the specific surface area (sS) relation, and thereby reduce 
the uncertainty in our permeability prediction.

The SEM images were acquired for the five normal to bed-
ding samples, Fig. 13, resulting in a pixel resolution dx of 
10-4 mm. The images were segmented into grains and pores 
by applying a threshold to estimate the specific surface area. 
After computing the specific surface area, Eqn. 17 was used to 
calculate the dg in millimeters3. 
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These new dg values were then used in the Kozeny-Carman 
equation (Eqn. 7) to recalculate the permeability. Table 2 

shows the summarized results of the five samples. 

LABORATORY MEASUREMENTS

The laboratory measurements, Table 3, include the ϕ, ρg, 
Klinkenberg corrected k, apparent formation factor, Fa, and 
the cementation exponent, m (assuming that the tortuosity 
parameter a = 1) for each sample. The measurements were con-
ducted under a confining stress of 15 MPa. The ϕ and k mea-
surements were made using gas. While conducting the resistiv-
ity measurements, the resistivity of brine was 0.174 Ω.m. 

Sample
Specific Surface Area 

(1/mm)
Average Grain Size 

(mm)
Porosity (fraction) Permeability (mD)

Pair 1- 0.0308 0.0052 0.0761 0.0308

Pair 2- 0.0193 0.0045 0.0722 0.0193

Pair 3- 0.2081 0.0045 0.1504 0.2081

Pair 4- 0.1068 0.0026 0.1707 0.1068

Pair 5- 0.7832 0.0075 0.1641 0.7832

Table 2. The minerals’ densities used to calculate the ρg of the five pairs of samples12

Sample ρ
b
 (g/cc)

Klinkenberg 
Permeability (mD)

Porosity (fraction)
Parameters (from resistance)

Fa m

Pair 1- 2.72 0.030 0.059 204.84 1.88

Pair 1-  2.71 0.026 0.072 117.79 1.81

Pair 2-  2.72 0.009 0.083 73.61 1.73

Pair 2-  2.72 0.016 0.073 121.39 1.83

Pair 3- 2.70 3.47 0.156 34.64 1.91

Pair 3- 2.70 1.85 0.149 35.93 1.88

Pair 4- 2.55 5.75 0.168 28.16 1.87

Pair 4- 2.54 0.073 0.167 78.16 2.44

Unpaired-  2.54 0.055 0.161 74.43 2.36

Table 3. Laboratory measurements for each sample
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Table 3. Laboratory measurements for each sample  
 
 
 
 
 

 
 
Fig. 14. The computed and measured ρb of the carbonate and sandstone samples. The dual 
energy CT scan data have excellent match. 
 
 

C
om

pu
te

d 
B

ul
k 

D
en

si
ty

 (g
/c

c)
 

Lab Measured Bulk Density (g/cc) 

Fig. 14. The computed and measured ρb of the carbonate and sandstone samples. 
The dual energy CT scan data have excellent match.
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RESULTS

Rock Properties

The measured ρb closely matches the volumetric average of 
the ρb at each voxel obtained using the dual energy CT, Fig. 
14. The ρg obtained using laboratory measurement data also 
match the computed values, using the Pf data, especially so 
for the carbonate samples, Fig. 15. Computing the sandstone 
ρg was not as trivial because of its more complex mineral-
ogy. Therefore, using a single clay mineral, illite, resulted in 
a larger deviation from the measured ρg, but when an average 
“dirty” sandstone value was used, the match was better. Both 
the ρb and the ρg are consistently higher than the laboratory 
measured ones.

We attribute this mismatch to the fact that some of the Pf 
values, as provided by dual energy scans, fell outside of the 
bounds for pure mineral end members. The reason for this 
effect is unknown, however, we feel that this apparently small 
mismatch justifies the method we used.

Of course, the laboratory data presented here are not nec-
essarily the ground truth. For example, the laboratory ρg for 
sandstone in Fig. 15 is smaller than 2.55 g/cc, while that of 
pure quartz is 2.65 g/cc.

Both the laboratory measured and computed porosities 
match as well, but since the computed ρg were higher than the 
measured, we expected the ϕ to be slightly higher as a result, 
Fig. 16. The carbonate samples show a better match than the 
sandstone samples and “dirty” sandstone results have a closer 
match than the illite results.

 
 
Fig. 15. The computed and measured ρg of the carbonate and sandstone samples. The 
computed results are slightly higher than the measured densities. The dirty sandstone case 
shows a better match than the illite case. 
 
 

 
 
Fig. 16. The computed and measured porosities of the carbonate and sandstone samples. 
There is a good match, but the computed porosities are consistently higher. The dirty 
sandstone case shows better correlation. 
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Fig. 15. The computed and measured ρg of the carbonate and sandstone samples. 
The computed results are slightly higher than the measured densities. The dirty 
sandstone case shows a better match than the illite case.
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Fig. 16. The computed and measured porosities of the carbonate and sandstone 
samples. There is a good match, but the computed porosities are consistently 
higher. The dirty sandstone case shows better correlation.

Fig. 17. The computed and measured formation factor for the carbonate and 
sandstone samples. The carbonate results match is higher than the sandstone 
samples. Both the dirty sandstone and illite give similar results.
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Fig. 18. The computed and measured permeability for the carbonate and sandstone samples.  
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Fig. 18. The computed and measured permeability for the carbonate and 
sandstone samples.
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Notice that in the low-porosity carbonate samples, the lab-
oratory measured ϕ is about 0.01 to 0.015 smaller than the 
computed ϕ. One reason for this may be that in these tight 
samples, there are some disconnected pores, and as a result, 
the gas used in the laboratory measurement did not enter 
these pores. If this is so, the DRP method we used here may 
give a better ϕ estimate.

The computed formation factors were obtained using a 
fixed cementation exponent — m = 2 — for all the samples, 
while the cementation exponent derived from laboratory resis-
tivity measurements for each sample somewhat differs from 2. 
Still, the formation factor values from DRP and the laboratory 
are fairly close to each other, Fig. 17, especially considering 
the fact that the formation factor is often displayed using a 
log scale.

The k match, Fig. 18, is not nearly as good as the 

formation factor match. The match is fairly good for some 
samples, but in other samples the mismatch can be as high as 
a factor of 10. The high measured k values may be attributed 
to small fractures that were not evident in CT scans. Also, 
because we use the Kozeny-Carman k equation, the assumed 
tortuosity and grain size values used in Eqn. 7 may not be 
appropriate. The permeability was recalculated using grain 
size values obtained from SEM images from five normal to 
bedding samples, Fig. 19, which slightly improved the match 
with the laboratory data. 

Anisotropy of Transport Properties

We ran numerical simulations on the three directions X, Y, 
and Z, on each sample. Numerical simulations over the Z 
axis matches the laboratory measurement direction while the 
results of the numerical simulations over the X and Y direc-
tions were used to analyze the anisotropy of each sample. 
Table 4 and Table 5 show the resulting permeabilities and 
formation factors for the carbonate and sandstone samples, 
respectively. Both transport properties, k, and electrical prop-
erties in the directions are practically identical. Therefore, the 
samples appear almost isotropic. In addition, when compar-
ing the parallel and normal to bedding pairs, we found that 
there are no large differences between the parallel and normal 
to bedding core plugs, which agrees with the results of the 
numerical simulations over the three directions. 

CONCLUSIONS

The presented method shows promising results that can cer-
tainly be improved upon with additional DRP analysis, such 
as imaging selected subsamples at the pore scale and finding 
the effective grain size. The dual energy CT scan, ρb, is close 
to the lab measurements. Knowing how to interpret the Pf 

 

 
 
Fig. 19. The SEM computed permeability and measured permeability for the carbonate and 
sandstone samples.  
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Fig. 19. The SEM computed permeability and measured permeability for the 
carbonate and sandstone samples.

Carbonates Permeability (mD) Formation Factor

Core Plug X Y Z X Y Z

Pair 1- 0.028 0.027 0.030 162.532 164.773 154.405

Pair 1- 0.041 0.042 0.034 126.899 125.807 135.443

Pair 2- 0.053 0.053 0.058 105.758 104.942 99.100

Pair 2- 0.045 0.044 0.042 118.956 121.524 121.712

Pair 3- 0.294 0.294 0.260 37.196 37.346 38.699

Pair 3- 0.242 0.237 0.231 41.163 41.406 41.773

Table 4. Numerical simulation results of the carbonate samples

Sandstone Permeability (mD) Formation Factor

Core Plug X Y Z X Y Z

Pair 4- 0.031 0.036 0.046 42.405 34.632 36.699

Pair 4- 0.229 0.064 0.031 31.794 31.729 40.524

Unpaired- 0.050 0.051 0.022 38.641 38.240 51.697

Table 5. Numerical simulation results of the sandstone samples
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data is the key to get accurate ρg and ϕ. In principle, this 
method can be used to quantify the transport properties of 
rock. The computed formation factor results appear more reli-
able that the k results. The latter are clearly more difficult to 
obtain due to uncertainty in the Kozeny-Carman parameters. 
The k results were improved by obtaining grain size values 
from the SEM images. 
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